[1]
M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, R. Trivedi, Solidification microstructures and solid-state parallels: Recent developments, future directions, Acta Mater., 57 (2009) 941-971.
DOI: 10.1016/j.actamat.2008.10.020
Google Scholar
[2]
I. Steinbach, Pattern formation in constrained dendritic growth with solutal buoyancy, Acta Mater., 57 (2009) 2640-2645.
DOI: 10.1016/j.actamat.2009.02.004
Google Scholar
[3]
Y. Chen, A. -A. Bogno, N.M. Xiao, B. Billia, X.H. Kang, H. Nguyen-Thi, X.H. Luo, D.Z. Li, Quantitatively comparing phase-field modeling with direct real time observation by synchrotron X-ray radiography of the initial transient during directional solidification of an Al–Cu alloy, Acta Mater., 60 (2012).
DOI: 10.1016/j.actamat.2011.09.028
Google Scholar
[4]
V. Emsellem, P. Tabeling, Experimental study of dendritic growth with an external flow, J. Cryst. Growth, 156 (1995) 285-295.
DOI: 10.1016/0022-0248(95)00282-0
Google Scholar
[5]
X. Tong, C. Beckermann, A. Karma, Velocity and shape selection of dendritic crystals in a forced flow, Phys. Rev. E, 61 (2000) R49-R52.
DOI: 10.1103/physreve.61.r49
Google Scholar
[6]
Y. Lu, C. Beckermann, J. Ramirez, Three-dimensional phase-field simulations of the effect of convection on free dendritic growth, J. Cryst. Growth, 280 (2005) 320-334.
DOI: 10.1016/j.jcrysgro.2005.03.063
Google Scholar
[7]
S.N. Tewari, M.A. Chopra, Break-down of a planar liquid-solid interface during directional solidification: influence of convection, J. Cryst. Growth, 118 (1992) 183-192.
DOI: 10.1016/0022-0248(92)90063-o
Google Scholar
[8]
R. Trivedi, H. Miyahara, P. Mazumder, E. Simsek, S.N. Tewari, Directional solidification microstructures in diffusive and convective regimes, J. Cryst. Growth, 222 (2001) 365-379.
DOI: 10.1016/s0022-0248(00)00761-2
Google Scholar
[9]
H. -J. Diepers, I. Steinbach, Interaction of Interdendritic Convection and Dendritic Primary Spacing: Phase-Field Simulation and Analytical Modeling, Mater. Sci. Forum, 508 (2006) 145-150.
DOI: 10.4028/www.scientific.net/msf.508.145
Google Scholar
[10]
R. Tönhardt, G. Amberg, Phase-field simulation of dendritic growth in a shear flow, J. Cryst. Growth, 194 (1998) 406-425.
DOI: 10.1016/s0022-0248(98)00687-3
Google Scholar
[11]
A. Karma, W. -J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E, 57 (1998) 4323-4349.
DOI: 10.1103/physreve.57.4323
Google Scholar
[12]
A. Karma, Phase-field formulation for quantitative modeling of alloy solidification, Phys. Rev. Lett., 87 (2001) 115701.
DOI: 10.1103/physrevlett.87.115701
Google Scholar
[13]
B. Echebarria, R. Folch, A. Karma, M. Plapp, Quantitative phase-field model of alloy solidification, Phys. Rev. E, 70 (2004) 061604.
DOI: 10.1103/physreve.70.061604
Google Scholar
[14]
C. Beckermann, H.J. Diepers, I. Steinbach, A. Karma, X. Tong, Modeling melt convection in phase-field simulations of solidification, J. Comput. Phys., 154 (1999) 468-496.
DOI: 10.1006/jcph.1999.6323
Google Scholar
[15]
Y. Chen, N.M. Xiao, X.H. Kang, D.Z. Li, Phase-field numerical simulation of pure free dendritic growth using Wheeler and Karma model, Adv. Mater. Res., 421 (2012) 90-97.
DOI: 10.4028/www.scientific.net/amr.421.90
Google Scholar
[16]
Y. Chen, H. Nguyen-Thi, D.Z. Li, A. -A. Bogno, B. Billia, N.M. Xiao, Influence of natural convection on microstructure evolution during the initial solidification transient: comparison of phase-field modeling with in situ synchrotron X-ray monitoring data, IOP Conf. Ser.: Mater. Sci. . Eng. 33 (2012).
DOI: 10.1088/1757-899x/33/1/012102
Google Scholar
[17]
J. Lipton, W. Kurz, R. Trivedi, Rapid dendrite growth in undercooled alloys, Acta Metall., 35 (1987) 957-964.
DOI: 10.1016/0001-6160(87)90174-x
Google Scholar
[18]
R. Trivedi, W. Kurz, Solidification microstructures: A conceptual approach, Acta Metall. Mater., 42 (1994) 15-23.
Google Scholar
[19]
J. Hunt, S. Lu, Numerical modeling of cellular/dendritic array growth: spacing and structure predictions, Metall. Mater. Trans. A, 27 (1996) 611-623.
DOI: 10.1007/bf02648950
Google Scholar