Prediction of Melt Flow Effects on Dendrite Growth

Article Preview

Abstract:

The effects of melt flow on dendrite growth during solidification are studied by the quantitative phase field model coupling the Navier-Stokes equations. Through analyzing the relationship between flow velocity and dendrite growth rate in simulations, a flow Péclet number involving with characteristic flow velocity, characteristic length of the zone affected by flow and thermal (solute) diffusion coefficient, is suggested for dendrite growth under convections. The growth rate increment due to flow follows a power-law relationship with the Péclet number. As the Péclet number is much higher than one, the influence of convection on dendrite growth is apparent, whereas as it is below one, the flow effects can be neglected.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

334-340

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, R. Trivedi, Solidification microstructures and solid-state parallels: Recent developments, future directions, Acta Mater., 57 (2009) 941-971.

DOI: 10.1016/j.actamat.2008.10.020

Google Scholar

[2] I. Steinbach, Pattern formation in constrained dendritic growth with solutal buoyancy, Acta Mater., 57 (2009) 2640-2645.

DOI: 10.1016/j.actamat.2009.02.004

Google Scholar

[3] Y. Chen, A. -A. Bogno, N.M. Xiao, B. Billia, X.H. Kang, H. Nguyen-Thi, X.H. Luo, D.Z. Li, Quantitatively comparing phase-field modeling with direct real time observation by synchrotron X-ray radiography of the initial transient during directional solidification of an Al–Cu alloy, Acta Mater., 60 (2012).

DOI: 10.1016/j.actamat.2011.09.028

Google Scholar

[4] V. Emsellem, P. Tabeling, Experimental study of dendritic growth with an external flow, J. Cryst. Growth, 156 (1995) 285-295.

DOI: 10.1016/0022-0248(95)00282-0

Google Scholar

[5] X. Tong, C. Beckermann, A. Karma, Velocity and shape selection of dendritic crystals in a forced flow, Phys. Rev. E, 61 (2000) R49-R52.

DOI: 10.1103/physreve.61.r49

Google Scholar

[6] Y. Lu, C. Beckermann, J. Ramirez, Three-dimensional phase-field simulations of the effect of convection on free dendritic growth, J. Cryst. Growth, 280 (2005) 320-334.

DOI: 10.1016/j.jcrysgro.2005.03.063

Google Scholar

[7] S.N. Tewari, M.A. Chopra, Break-down of a planar liquid-solid interface during directional solidification: influence of convection, J. Cryst. Growth, 118 (1992) 183-192.

DOI: 10.1016/0022-0248(92)90063-o

Google Scholar

[8] R. Trivedi, H. Miyahara, P. Mazumder, E. Simsek, S.N. Tewari, Directional solidification microstructures in diffusive and convective regimes, J. Cryst. Growth, 222 (2001) 365-379.

DOI: 10.1016/s0022-0248(00)00761-2

Google Scholar

[9] H. -J. Diepers, I. Steinbach, Interaction of Interdendritic Convection and Dendritic Primary Spacing: Phase-Field Simulation and Analytical Modeling, Mater. Sci. Forum, 508 (2006) 145-150.

DOI: 10.4028/www.scientific.net/msf.508.145

Google Scholar

[10] R. Tönhardt, G. Amberg, Phase-field simulation of dendritic growth in a shear flow, J. Cryst. Growth, 194 (1998) 406-425.

DOI: 10.1016/s0022-0248(98)00687-3

Google Scholar

[11] A. Karma, W. -J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E, 57 (1998) 4323-4349.

DOI: 10.1103/physreve.57.4323

Google Scholar

[12] A. Karma, Phase-field formulation for quantitative modeling of alloy solidification, Phys. Rev. Lett., 87 (2001) 115701.

DOI: 10.1103/physrevlett.87.115701

Google Scholar

[13] B. Echebarria, R. Folch, A. Karma, M. Plapp, Quantitative phase-field model of alloy solidification, Phys. Rev. E, 70 (2004) 061604.

DOI: 10.1103/physreve.70.061604

Google Scholar

[14] C. Beckermann, H.J. Diepers, I. Steinbach, A. Karma, X. Tong, Modeling melt convection in phase-field simulations of solidification, J. Comput. Phys., 154 (1999) 468-496.

DOI: 10.1006/jcph.1999.6323

Google Scholar

[15] Y. Chen, N.M. Xiao, X.H. Kang, D.Z. Li, Phase-field numerical simulation of pure free dendritic growth using Wheeler and Karma model, Adv. Mater. Res., 421 (2012) 90-97.

DOI: 10.4028/www.scientific.net/amr.421.90

Google Scholar

[16] Y. Chen, H. Nguyen-Thi, D.Z. Li, A. -A. Bogno, B. Billia, N.M. Xiao, Influence of natural convection on microstructure evolution during the initial solidification transient: comparison of phase-field modeling with in situ synchrotron X-ray monitoring data, IOP Conf. Ser.: Mater. Sci. . Eng. 33 (2012).

DOI: 10.1088/1757-899x/33/1/012102

Google Scholar

[17] J. Lipton, W. Kurz, R. Trivedi, Rapid dendrite growth in undercooled alloys, Acta Metall., 35 (1987) 957-964.

DOI: 10.1016/0001-6160(87)90174-x

Google Scholar

[18] R. Trivedi, W. Kurz, Solidification microstructures: A conceptual approach, Acta Metall. Mater., 42 (1994) 15-23.

Google Scholar

[19] J. Hunt, S. Lu, Numerical modeling of cellular/dendritic array growth: spacing and structure predictions, Metall. Mater. Trans. A, 27 (1996) 611-623.

DOI: 10.1007/bf02648950

Google Scholar