Phase Stability and Elastic Properties of оne Dimensional Long Period Structures of Al3Ti under High Pressure

Article Preview

Abstract:

Phase stability and elastic properties of seven one dimensional long period structures (1D-LPSs) of Al3Ti under high pressure have been systematically investigated by first-principles calculations. The enthalpy differences indicate that Al3Ti will undergo a phase transition from 1D-LPSs to L12 structure at high pressure. With increase of antiphase boundary period parameter M’, the enthalpy initially decreases and then increases, and the enthalpy for D023 is the smallest. Oppositely, the phase transition pressure firstly increases and then decreases, and the maximum is for D023. The elastic constants and elastic moduli B, G and E increase monotonically with increase of pressure, and the corresponding second-order polynomial fits are also obtained. Interestingly, the pressure dependence of Poisson’s ratio show similar tendency with that of B/G ratio. Both the B/G ratios and the Cauchy pressures reveal that these 1D-LPSs exhibit brittleness at high pressure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

354-361

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Raman, K. Schubert, On the constitution of some alloy series related to TiAl3. II. investigations in some T-Al-Si-and T4.. 6-in systems, Z. Metallk. 56 (1965) 44-52.

Google Scholar

[2] F.J.J. van Loo, G.D. Rieck, Diffusion in the titanium-aluminium system-I. Interdiffusion between solid Al and Ti or Ti-Al alloys, Acta Metall. 21 (1973) 61-71.

DOI: 10.1016/0001-6160(73)90220-4

Google Scholar

[3] J. Maas, G. Bastin, F. van Loo, R. Metselaar, The texture in diffusion-grown layers of trialuminides MeAl3(Me=Ti, V, Ta, Nb, Zr, Hf) and VNi3, Z. Metallk. 74 (1983) 294-299.

DOI: 10.1002/chin.198333005

Google Scholar

[4] S. Srinivasan, P.B. Desch, R.B. Schwarz, Metastable phases in the Al3X (X=Ti, Zr, and Hf) intermetallic system, Scripta. Mater. 25 (1991) 2513-2516.

DOI: 10.1016/0956-716x(91)90059-a

Google Scholar

[5] M. Barrachin, A. Finel, R. Caudron, A. Pasturel, A. Francois, Order and disorder in Ni3V: Effective pair interactions and the role of electronic excitations, Phys. Rev. B 50 (1994) 12980.

DOI: 10.1103/physrevb.50.12980

Google Scholar

[6] N. Kunkel, J. Sander, N. Louis, Y. Pang, L.M. Dejon, F. Wagener, Y.N. Zang, A. Sayede, M. Bauer, M. Springborg, H. Kohlmann, Theoretical investigation of the hydrogenation induced atomic rearrangements in palladium rich intermetallic compounds MPd3 (M= Mg, In, Tl), Eur. Phys. J. B 82 (2011).

DOI: 10.1140/epjb/e2011-10916-5

Google Scholar

[7] O.S. Novikova, A.Y. Volkov, Kinetics of A1↔ B2 phase transformations in Cu-Pd alloys, Bull. Russ. Acad. Sci: Phys 78 (2014) 744-747.

DOI: 10.3103/s1062873814080279

Google Scholar

[8] S. Wang, C. Li, W. Yong, X. Hou, H. Geng, F. Xu, Formation of La-modified L12–Al3Ti by mechanical alloying and annealing, Mater. Charact. 59 (2008) 440-446.

DOI: 10.1016/j.matchar.2007.03.003

Google Scholar

[9] J. Li, M. Zhang, X. Luo, Theoretical investigations on phase stability, elastic constants and electronic structures of D022-and L12-Al3Ti under high pressure, J. Alloys Compd. 556 (2013) 214-220.

DOI: 10.1016/j.jallcom.2012.12.135

Google Scholar

[10] P.Y. Tang, B.Y. Tang, Influence of antiphase boundary period parameter M'on elastic and electronic properties of one dimensional long period structures of Al3Ti, Solid State Commun. 152 (2012) 1939-(1944).

DOI: 10.1016/j.ssc.2012.07.028

Google Scholar

[11] P.Y. Tang, J.Y. Li, G.H. Huang, Q.L. Xie, Uniaxial loading response of one dimensional long period structures of Al3Ti, Comput. Mater. Sci. 91 (2014) 153-158.

DOI: 10.1016/j.commatsci.2014.04.061

Google Scholar

[12] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[13] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[14] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953-17979.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[15] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[16] P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations, Phys. Rev. B 49 (1994) 16223-16233.

DOI: 10.1103/physrevb.49.16223

Google Scholar

[17] C. Colinet, A. Pasturel, Ab initio calculation of the formation energies of L12, D022, D023 and one dimensional long period structures in TiAl3 compound, Intermetallics 10 (2002) 751-764.

DOI: 10.1016/s0966-9795(02)00054-7

Google Scholar

[18] P. Bhambhani, N. Munjal, G. Sharma, V. v. Vyas, B.K. Sharma, First-principles study of B1 to B2 phase transition in PbS, Journal of Physics: Conference Series, IOP Publishing, 2012, p.012068.

DOI: 10.1088/1742-6596/377/1/012068

Google Scholar

[19] P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2, J. Appl. Phys. 84 (1998) 4891-4904.

DOI: 10.1063/1.368733

Google Scholar

[20] J. Emmerlich, D. Music, M. Braun, P. Fayek, F. Munnik, J.M. Schneider, A proposal for an unusually stiff and moderately ductile hard coating material: Mo2BC, J. Phys. D: Appl. Phys. 42 (2009) 185406.

DOI: 10.1088/0022-3727/42/18/185406

Google Scholar

[21] S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45 (1954) 823-843.

DOI: 10.1080/14786440808520496

Google Scholar