Deformation Twinning in Hexagonal Close-Packed Single Crystals under Uniaxial Compression

Article Preview

Abstract:

In this paper, the uniaxial compression of Mg, Ti, Zr and Co single crystals along the direction is performed by molecular dynamics (MD) to investigate the elastic-to-plastic transition in these hexagonal close-packed (hcp) metals. Two deformation twinning modes are observed in these simulations, including the twinning in Ti, Zr and Co and the [0001] twinning in Mg. The underlying atomistic mechanisms of these twinning modes are analyzed in detail.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

379-385

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Gong, A.J. Wilkinson, Anisotropy in the plastic flow properties of single-crystal α titanium determined from micro-cantilever beams, Acta Mater. 57 (2009) 5693-5705.

DOI: 10.1016/j.actamat.2009.07.064

Google Scholar

[2] Q. Yu, Z. Shan, J. Li, X. Huang, L. Xiao, J. Sun, E. Ma, Strong crystal size effect on deformation twinning, Nature 463 (2010) 335-338.

DOI: 10.1038/nature08692

Google Scholar

[3] J.F. Nie, Y.M. Zhu, J.Z. Liu, X.Y. Fang, Periodic Segregation of Solute Atoms in Fully Coherent Twin Boundaries, Science 340 (2013) 957-960.

DOI: 10.1126/science.1229369

Google Scholar

[4] B. Li, E. Ma, Zonal dislocations mediating {10-11}<10-1-2> twinning in magnesium, Acta Mater. 57 (2009) 1734-1743.

Google Scholar

[5] L. Capolungo, I. Beyerlein, Nucleation and stability of twins in hcp metals, Phys. Rev. B 78 (2008) 024117.

DOI: 10.1103/physrevb.78.024117

Google Scholar

[6] J. Wang, L. Liu, C.N. Tomé, S.X. Mao, S.K. Gong, Twinning and De-twinning via Glide and Climb of Twinning Dislocations along Serrated Coherent Twin Boundaries in Hexagonal-close-packed Metals, Mater. Res. Lett. 1 (2013) 81-88.

DOI: 10.1080/21663831.2013.779601

Google Scholar

[7] C.D. Barrett, H. El Kadiri, M.A. Tschopp, Breakdown of the Schmid law in homogeneous and heterogeneous nucleation events of slip and twinning in magnesium, J. Mech. Phys. Solids 60 (2012) 2084-(2099).

DOI: 10.1016/j.jmps.2012.06.015

Google Scholar

[8] M. Bian, K. Shin, {10-12} twinning behavior in magnesium single crystal, Met. Mater. Int. 19 (2013) 999-1004.

DOI: 10.1007/s12540-013-5012-4

Google Scholar

[9] I.J. Beyerlein, J. Wang, M.R. Barnett, C.N. Tome, Double twinning mechanisms in magnesium alloys via dissociation of lattice dislocations, Proc. R. Soc. Lond. A 468 (2012) 1496-1520.

DOI: 10.1098/rspa.2011.0731

Google Scholar

[10] É. Martin, L. Capolungo, L. Jiang, J.J. Jonas, Variant selection during secondary twinning in Mg–3%Al, Acta Mater. 58 (2010) 3970-3983.

DOI: 10.1016/j.actamat.2010.03.027

Google Scholar

[11] K. Xiong, X. Liu, J. Gu, Multiscale modeling of nanoindentation-induced instability in FeNi3 crystal, Comp. Mater. Sci. 102 (2015) 140-150.

DOI: 10.1016/j.commatsci.2015.02.027

Google Scholar

[12] K. Xiong, X. Liu, J. Gu, Orientation-dependent crystal instability of gamma-TiAl in nanoindentation investigated by a multiscale interatomic potential finite-element model, Modell. Simul. Mater. Sci. Eng. 22 (2014) 085013.

DOI: 10.1088/0965-0393/22/8/085013

Google Scholar

[13] G.J. Martyna, D.J. Tobias, M.L. Klein, Constant pressure molecular dynamics algorithms, J. Chem. Phys. 101 (1994) 4177.

DOI: 10.1063/1.467468

Google Scholar

[14] M. Zhou, A new look at the atomic level virial stress: on continuum-molecular system equivalence, Proc. R. Soc. Lond. A 459 (2003) 2347-2392.

DOI: 10.1098/rspa.2003.1127

Google Scholar

[15] T. Egami, Atomic level stresses, Prog. Mater Sci. 56 (2011) 637-653.

Google Scholar

[16] K. Xiong, X. Liu, C. Li, J. Gu, Phonon instability of Co single crystal in uniaxial tension and nanoindentation, Comp. Mater. Sci. 99 (2015) 47-56.

DOI: 10.1016/j.commatsci.2014.11.055

Google Scholar

[17] D.Y. Sun, M.I. Mendelev, C.A. Becker, K. Kudin, T. Haxhimali, M. Asta, J.J. Hoyt, A. Karma, D.J. Srolovitz, Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg, Phys. Rev. B 73 (2006) 024116.

DOI: 10.1103/physrevb.73.024116

Google Scholar

[18] R.R. Zope, Y. Mishin, Interatomic potentials for atomistic simulations of the Ti-Al system, Phys. Rev. B 68 (2003) 024102.

DOI: 10.1103/physrevb.68.024102

Google Scholar

[19] M.I. Mendelev, G.J. Ackland, Development of an interatomic potential for the simulation of phase transformations in zirconium, Philos. Mag. Lett. 87 (2007) 349-359.

DOI: 10.1080/09500830701191393

Google Scholar

[20] G.P.P. Pun, Y. Mishin, Embedded-atom potential for hcp and fcc cobalt, Phys. Rev. B 86 (2012) 134116.

DOI: 10.1103/physrevb.86.134116

Google Scholar

[21] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys. 117 (1995) 1-19.

Google Scholar

[22] J. Li, AtomEye: an efficient atomistic configuration viewer, Modell. Simul. Mater. Sci. Eng. 11 (2003) 173-177.

DOI: 10.1088/0965-0393/11/2/305

Google Scholar

[23] M. Born, K. Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford, (1954).

Google Scholar

[24] K. Xiong, X. Liu, J. Gu, Multiscale modeling of lattice dynamical instability in gamma-TiAl crystal Modell. Simul. Mater. Sci. Eng. 23 (2015) 045006.

DOI: 10.1088/0965-0393/23/4/045006

Google Scholar

[25] J. Li, A.H.W. Ngan, P. Gumbsch, Atomistic modeling of mechanical behavior, Acta Mater. 51 (2003) 5711-5742.

DOI: 10.1016/j.actamat.2003.08.002

Google Scholar