[1]
Ch. -A. Gandin, Y. Brechet, M. Rappaz, G. Canova, M. Ashby, H. Shercliff, Modelling of solidification and heat treatment for the prediction of yield stress of cast alloys, Acta Mater. 50 (2002) 901-927.
DOI: 10.1016/s1359-6454(01)00376-7
Google Scholar
[2]
G. Liu, G.J. Zhang, X.D. Ding, J. Sun, K.H. Chen, Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc-or rod/needle-shaped, Mater. Sci. Eng. A. 344 (2003) 113-124.
DOI: 10.1016/s0921-5093(02)00398-2
Google Scholar
[3]
H.R. Shercliff, M.F. Ashby, A process model for age hardening of aluminum alloys-Ι. The model, Acta Mater. 38 (1990) 1789-1802.
DOI: 10.1016/0956-7151(90)90291-n
Google Scholar
[4]
H.R. Shercliff, M.F. Ashby, A process model for age hardening of aluminum alloys-ΙΙ. Applications of the model, Acta Mater. 38 (1990) 1803-1812.
DOI: 10.1016/0956-7151(90)90292-o
Google Scholar
[5]
O.R. Myth, Æ. Grong, S.J. Andersen, Modeling of the age hardening behavior of Al-Mg-Si alloys, Acta Mater. 49 (2001) 65-75.
Google Scholar
[6]
O.R. Myth, Æ. Grong, Modeling of non-isothermal transformations in alloys containing a particle distribution, Acta Mater. 48 (2000) 1605-1615.
DOI: 10.1016/s1359-6454(99)00435-8
Google Scholar
[7]
R. Wagner, R. Kampmann, Decomposition of alloys: the early stages. Oxford: Pergamon Press, (1984).
Google Scholar
[8]
J.S. Langer, A.J. Schwartz, Kinetics of nucleation in near-critical fluids, Phys. Rev. A. 21 (1980) 948-958.
DOI: 10.1103/physreva.21.948
Google Scholar
[9]
P.A. Rometsch, G.B. Schaffer, An age hardening model for Al-7Si-Mg casting alloys, Mater. Sci. Eng. A. 325 (2002) 424-434.
DOI: 10.1016/s0921-5093(01)01479-4
Google Scholar
[10]
J.Z. Guo, W.S. Cao, M. Samonds, The application of integrated computational material engineering (ICME) in metal castings simulation, Mater. Sci. Eng. 33 (2012).
DOI: 10.1088/1757-899x/33/1/012003
Google Scholar
[11]
S. Esmaeili, D.J. Loyd, W.J. Poole, A yield strength model for the Al-Mg-Si-Cu alloy AA6111, Acta Mater. 51 (2003) 2243-2257.
DOI: 10.1016/s1359-6454(03)00028-4
Google Scholar
[12]
O.R. Myth. Æ. Grong, K.O. Pedersen, A combine precipitation, yield strength, and work hardening model for Al-Mg-Si alloys, Metall. Mater. Trans. A 41 (2010) 2276-2289.
DOI: 10.1007/s11661-010-0258-7
Google Scholar
[13]
K. Radhakrishna, S. Seshan, M.R. Seshadri, Dendrite arm spacing in aluminum alloy castings, AFS Transactions. 80-87 (1980) 695-702.
Google Scholar
[14]
P. R. Goulart, J. E. Spinelli, W.R. Osório, A. Garcia, Mechanical properties as a function of microstructure and solidification thermal variables of Al-Si castings, Mater. Sci. Eng. A. 421 (2006) 245-253.
DOI: 10.1016/j.msea.2006.01.050
Google Scholar
[15]
B. Li, Q.Y. Xu, D. Pan, B.C. Liu, Y.C. Xiong, Y.J. Zhou, R. Z Hong, Microstructure simulation of ZL114A alloy during low pressure die casting process, Acta Metall. Sin. 44 (2008) 243-248.
Google Scholar
[16]
S.P. Yuan, G. Liu, R.H. Wang, G.J. Zhang, X. Pu, J. Sun, K. H Chen, Aging-depending coupling effects of multiple precipitates on the ductile fracture of heat-treatment aluminum alloys, Mater. Sci. Eng. A. 499 (2009) 387-395.
DOI: 10.1016/j.msea.2008.09.012
Google Scholar
[17]
Y. Birol, Response to artificial ageing of dendritic and globular Al-7Si-Mg alloys, J. Alloys Compd. 484 (2009) 164-167.
DOI: 10.1016/j.jallcom.2009.05.043
Google Scholar
[18]
G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper, The precipitation sequence in Al-Mg-Si alloys, Acta Mater. 46 (1998) 3893-3904.
DOI: 10.1016/s1359-6454(98)00059-7
Google Scholar
[19]
A. Deschamps, Y. Brechet, Influence of predeformation and aging of precipitation kinetics and yield stress, Acta Mater. 47 (1998) 293-305.
DOI: 10.1016/s1359-6454(98)00296-1
Google Scholar
[20]
J.G. Li, H.Y. Tan, Z.M. Shi, Q. He, Analysis of Mg2Si precipitates in Al-Si-Mg and Al-Mg-Si alloys by FE-SEM, The Chinese Journal of Nonferrous Metals. 18 (2008)1819-1823.
Google Scholar
[21]
G.J. Zhang, G. Liu, X.D. Ding, J. Sun, K. H Chen, Experimental and modeling study of aged aluminum alloys strengthening response, Acta Metall. Sin. 39 (2003) 803-808.
Google Scholar
[22]
M. Song, Modeling the hardness and yield strength evolutions of aluminum alloy with rod/needle-shaped precipitates, Mater. Sci. Eng. A. 443 (2007) 172-177.
DOI: 10.1016/j.msea.2006.08.025
Google Scholar
[23]
I.N. Khan, M.J. Starink, J.L. Yan, A model for precipitation kinetics and strengthening in Al-Cu-Mg alloys, Mater. Sci. Eng. A. 472 (2008) 66-74.
DOI: 10.1016/j.msea.2007.03.033
Google Scholar
[24]
A.W. Zhu, E.A. Starke Jr, Strengthening effect of unshearable particles of finite size: A computer experimental study, Acta Mater. 47 (1999) 3263-3269.
DOI: 10.1016/s1359-6454(99)00179-2
Google Scholar
[25]
J.D. Robson, Modeling the evolution of particle of particle size distribution during nucleation, growth and carsening, Mater. Sci. Tech. 20 (2004) 441-448.
Google Scholar
[26]
H. Kobayashi, M. Ode, S. G. Kim, W.T. Kim, T. Suzuki, Phase-field model for solidification of ternary alloys coupled with thermodynamic database, Scripta Mater. 48 (2003) 689-694.
DOI: 10.1016/s1359-6462(02)00557-2
Google Scholar
[27]
C. R. Hutchinson, J.F. Nie, S. Gorsse, Modeling the precipitation processes and strengthening mechanisms in a Mg-Al-(Zn) AZ91 alloy, Metall. Mater. Trans. A. 36 (2005) 2093-2105.
DOI: 10.1007/s11661-005-0330-x
Google Scholar