A Model for Prediction of Yield Stress of Heat Treated Al-7Si-Mg Cast Alloys

Article Preview

Abstract:

In the present investigation, a physically based numerical model was developed to predict the yield stress of Al-7Si-Mg cast alloy during processing. It covered the integrated unit step models of the physical metallurgy of solidification, solid-state of homogenization, and structural hardening of precipitation. The as-cast microstructure of Al-7Si-Mg alloy was calculated based on the cellular automaton method and the evolution of the precipitated phase during aging process was achieved by a precipitation kinetic model involved nucleation, growth and coarsening. The yield stress prediction was achieved by a strengthening model including the effects of as-cast microstructure, solution strengthening and precipitate hardening. The predictions of this model were verified by comparing with experimental measured yield stress which shows that this model is successfully applied to predict the yield stress evolution of Al-7Si-Mg cast alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

409-418

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ch. -A. Gandin, Y. Brechet, M. Rappaz, G. Canova, M. Ashby, H. Shercliff, Modelling of solidification and heat treatment for the prediction of yield stress of cast alloys, Acta Mater. 50 (2002) 901-927.

DOI: 10.1016/s1359-6454(01)00376-7

Google Scholar

[2] G. Liu, G.J. Zhang, X.D. Ding, J. Sun, K.H. Chen, Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc-or rod/needle-shaped, Mater. Sci. Eng. A. 344 (2003) 113-124.

DOI: 10.1016/s0921-5093(02)00398-2

Google Scholar

[3] H.R. Shercliff, M.F. Ashby, A process model for age hardening of aluminum alloys-Ι. The model, Acta Mater. 38 (1990) 1789-1802.

DOI: 10.1016/0956-7151(90)90291-n

Google Scholar

[4] H.R. Shercliff, M.F. Ashby, A process model for age hardening of aluminum alloys-ΙΙ. Applications of the model, Acta Mater. 38 (1990) 1803-1812.

DOI: 10.1016/0956-7151(90)90292-o

Google Scholar

[5] O.R. Myth, Æ. Grong, S.J. Andersen, Modeling of the age hardening behavior of Al-Mg-Si alloys, Acta Mater. 49 (2001) 65-75.

Google Scholar

[6] O.R. Myth, Æ. Grong, Modeling of non-isothermal transformations in alloys containing a particle distribution, Acta Mater. 48 (2000) 1605-1615.

DOI: 10.1016/s1359-6454(99)00435-8

Google Scholar

[7] R. Wagner, R. Kampmann, Decomposition of alloys: the early stages. Oxford: Pergamon Press, (1984).

Google Scholar

[8] J.S. Langer, A.J. Schwartz, Kinetics of nucleation in near-critical fluids, Phys. Rev. A. 21 (1980) 948-958.

DOI: 10.1103/physreva.21.948

Google Scholar

[9] P.A. Rometsch, G.B. Schaffer, An age hardening model for Al-7Si-Mg casting alloys, Mater. Sci. Eng. A. 325 (2002) 424-434.

DOI: 10.1016/s0921-5093(01)01479-4

Google Scholar

[10] J.Z. Guo, W.S. Cao, M. Samonds, The application of integrated computational material engineering (ICME) in metal castings simulation, Mater. Sci. Eng. 33 (2012).

DOI: 10.1088/1757-899x/33/1/012003

Google Scholar

[11] S. Esmaeili, D.J. Loyd, W.J. Poole, A yield strength model for the Al-Mg-Si-Cu alloy AA6111, Acta Mater. 51 (2003) 2243-2257.

DOI: 10.1016/s1359-6454(03)00028-4

Google Scholar

[12] O.R. Myth. Æ. Grong, K.O. Pedersen, A combine precipitation, yield strength, and work hardening model for Al-Mg-Si alloys, Metall. Mater. Trans. A 41 (2010) 2276-2289.

DOI: 10.1007/s11661-010-0258-7

Google Scholar

[13] K. Radhakrishna, S. Seshan, M.R. Seshadri, Dendrite arm spacing in aluminum alloy castings, AFS Transactions. 80-87 (1980) 695-702.

Google Scholar

[14] P. R. Goulart, J. E. Spinelli, W.R. Osório, A. Garcia, Mechanical properties as a function of microstructure and solidification thermal variables of Al-Si castings, Mater. Sci. Eng. A. 421 (2006) 245-253.

DOI: 10.1016/j.msea.2006.01.050

Google Scholar

[15] B. Li, Q.Y. Xu, D. Pan, B.C. Liu, Y.C. Xiong, Y.J. Zhou, R. Z Hong, Microstructure simulation of ZL114A alloy during low pressure die casting process, Acta Metall. Sin. 44 (2008) 243-248.

Google Scholar

[16] S.P. Yuan, G. Liu, R.H. Wang, G.J. Zhang, X. Pu, J. Sun, K. H Chen, Aging-depending coupling effects of multiple precipitates on the ductile fracture of heat-treatment aluminum alloys, Mater. Sci. Eng. A. 499 (2009) 387-395.

DOI: 10.1016/j.msea.2008.09.012

Google Scholar

[17] Y. Birol, Response to artificial ageing of dendritic and globular Al-7Si-Mg alloys, J. Alloys Compd. 484 (2009) 164-167.

DOI: 10.1016/j.jallcom.2009.05.043

Google Scholar

[18] G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper, The precipitation sequence in Al-Mg-Si alloys, Acta Mater. 46 (1998) 3893-3904.

DOI: 10.1016/s1359-6454(98)00059-7

Google Scholar

[19] A. Deschamps, Y. Brechet, Influence of predeformation and aging of precipitation kinetics and yield stress, Acta Mater. 47 (1998) 293-305.

DOI: 10.1016/s1359-6454(98)00296-1

Google Scholar

[20] J.G. Li, H.Y. Tan, Z.M. Shi, Q. He, Analysis of Mg2Si precipitates in Al-Si-Mg and Al-Mg-Si alloys by FE-SEM, The Chinese Journal of Nonferrous Metals. 18 (2008)1819-1823.

Google Scholar

[21] G.J. Zhang, G. Liu, X.D. Ding, J. Sun, K. H Chen, Experimental and modeling study of aged aluminum alloys strengthening response, Acta Metall. Sin. 39 (2003) 803-808.

Google Scholar

[22] M. Song, Modeling the hardness and yield strength evolutions of aluminum alloy with rod/needle-shaped precipitates, Mater. Sci. Eng. A. 443 (2007) 172-177.

DOI: 10.1016/j.msea.2006.08.025

Google Scholar

[23] I.N. Khan, M.J. Starink, J.L. Yan, A model for precipitation kinetics and strengthening in Al-Cu-Mg alloys, Mater. Sci. Eng. A. 472 (2008) 66-74.

DOI: 10.1016/j.msea.2007.03.033

Google Scholar

[24] A.W. Zhu, E.A. Starke Jr, Strengthening effect of unshearable particles of finite size: A computer experimental study, Acta Mater. 47 (1999) 3263-3269.

DOI: 10.1016/s1359-6454(99)00179-2

Google Scholar

[25] J.D. Robson, Modeling the evolution of particle of particle size distribution during nucleation, growth and carsening, Mater. Sci. Tech. 20 (2004) 441-448.

Google Scholar

[26] H. Kobayashi, M. Ode, S. G. Kim, W.T. Kim, T. Suzuki, Phase-field model for solidification of ternary alloys coupled with thermodynamic database, Scripta Mater. 48 (2003) 689-694.

DOI: 10.1016/s1359-6462(02)00557-2

Google Scholar

[27] C. R. Hutchinson, J.F. Nie, S. Gorsse, Modeling the precipitation processes and strengthening mechanisms in a Mg-Al-(Zn) AZ91 alloy, Metall. Mater. Trans. A. 36 (2005) 2093-2105.

DOI: 10.1007/s11661-005-0330-x

Google Scholar