QSAR Study on Imidazole Derivatives as Corrosion Inhibitors by Genetic Function Approximation Method

Article Preview

Abstract:

Quantitative structure and activity relationship (QSAR) method is becoming more desirable for predicting of corrosion inhibition properties. The inhibition efficiency of organic compounds is dependent on many basic molecular descriptors, including structural descriptors, thermodynamic descriptors, information content descriptors, topological descriptors as Wiener index, Zagreb index and molecular connectivity indices. A genetic function approximation approach was used to run the regression analysis and establish correlations between different types of descriptors and measured corrosion inhibition efficiency for imidazole derivatives. A QSAR equation was developed and used to predict the corrosion inhibition efficiency for 18 imidazole derivatives. The prediction of corrosion efficiencies of these compounds nicely matched the experimental measurements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

426-432

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Xu, Y. Liu, X. Yin, W. Yang, Y. Chen. Experimental and theoretical study of corrosion inhibition of 3-pyridinecarbozalde thiosemicarbazone for mild steel in hydrochloric acid. Corros Sci. 74 (2013), 206-213.

DOI: 10.1016/j.corsci.2015.09.007

Google Scholar

[2] N.O. Eddy, H. Momoh-Yahaya, E.E. Oguzie. Theoretical and experimental studies on the corrosion inhibition potentials of some purines for aluminum in 0. 1M HCl. Journal of Advanced Research, 6 (2015), 203-217.

DOI: 10.1016/j.jare.2014.01.004

Google Scholar

[3] B.A. Bhongade, S. Talath, R.A. Gadad, A.K. Gadad. Biological activities of imidazo[2, 1-b][1, 3, 4] thiadiazole derivatives: a review. Journal of Saudi Chemical Society (2013), 517-531.

DOI: 10.1016/j.jscs.2013.01.010

Google Scholar

[4] M. Yadav, S. Kumar, D. Behera. Inhibition effect of substituted thiadiazoles on corrosion activity of N80 Steel in HCl Solution, Journal of Metallurgy. 2013 (2013), 1-14.

DOI: 10.1155/2013/256403

Google Scholar

[5] M. Behpour, S.M. Ghoreishi, N. Mohammadi, N. Soltani, M. Salavati-Niasari. Investigation of some Schiff base compounds containing disulfide bond as HCl corrosion inhibitors for mild steel. Corros Sci. 52 (2010), 4046-4057.

DOI: 10.1016/j.corsci.2010.08.020

Google Scholar

[6] M. Lebrini, F. Robert, H. Vezin, C. Roos. Electrochemical and quantum chemical studies of some indole derivatives as corrosion inhibitors for C38 steel in molar hydrochloric acid. Corros Sci. 52 (2010), 3367-3376.

DOI: 10.1016/j.corsci.2010.06.009

Google Scholar

[7] X. Wu, H. Zeng, X. Zhu, Q. Ma, Y. Hou, X. Wu. Novel pyrrolopyridinone derivatives as anticancer inhibitors towards Cdc7: QSAR studies based on dockings by solvation score approach. Eur J Pharm Sci. 50 (2013), 323-334.

DOI: 10.1016/j.ejps.2013.07.013

Google Scholar

[8] W. Long, J. Xiang, H. Wu, W. Hu, X. Zhang, J. Jin, X. He, X. Shen, Z. Zhou, S. Fan. QSAR modeling of iNOS inhibitors based on a novel regression method: Multi-stage adaptive regression. Chemometr Intell Lab. 128 (2013), 83-88.

DOI: 10.1016/j.chemolab.2013.07.011

Google Scholar

[9] L. Tarko, C.T. Supuran. QSAR studies of sulfamate and sulfamide inhibitors targeting human carbonic anhydrase isozymes I, II, IX and XII. Bioorgan Med Chem. 21 (2013), 1404-1409.

DOI: 10.1016/j.bmc.2012.11.004

Google Scholar

[10] Z. Wang, Y. Qin, P. Wang, Y. Yang, Q. Wen, X. Zhang, H. Qiu, Y. Duan, Y. Wang, Y. Sang, H. Zhu. Sulfonamides containing coumarin moieties selectively and potently inhibit carbonic anhydrases II and IX: Design, synthesis, inhibitory activity and 3D-QSAR analysis. Eur J Med Chem. 66 (2013).

DOI: 10.1016/j.ejmech.2013.04.035

Google Scholar

[11] L. Maccari, M. Magnani, G. Strappaghetti, F. Corelli, M. Botta, F. Manetti. A genetic-function-approximation-based QSAR model for the affinity of arylpiperazines toward α. Journal of Chemical Information and Modeling. 46 (2006), 1466-1478.

DOI: 10.1021/ci060031z

Google Scholar

[12] D. Rogers. Data Analysis using G/SPLINES. Advances in Neural Processing Systems 4 (1991), 1088-1095.

Google Scholar

[13] B. Peric, J. Sierra, E. Marti, R. Cruanas, M.A. Garau. Quantitative structure-activity relationship (QSAR) prediction of (eco)toxicity of short aliphatic protic ionic liquids. Ecotoxicol Environ Saf. 115 (2015), 257-262.

DOI: 10.1016/j.ecoenv.2015.02.027

Google Scholar

[14] Q. Chen, L. Wu, W. Liu, L. Xing, X. Fan. Enhanced QSAR model performance by integrating structural and gene expression information. Molecules. 18 (2013), 10789-10801.

DOI: 10.3390/molecules180910789

Google Scholar

[15] S.G. Zhang, W. Lei, M.Z. Xia, F.Y. Wang. QSAR study on N-containing corrosion inhibitors: Quantum chemical approach assisted by topological index. Journal of Molecular Structure: THEOCHEM. 732 (2005), 173-182.

DOI: 10.1016/j.theochem.2005.02.091

Google Scholar

[16] K.V. Balakin. Quantitative structure-metabolism relationship modeling of metabolic n-dealkylation reaction rates. Drug Metab Dispos. 32 (2004), 1111-1120.

DOI: 10.1124/dmd.104.000364

Google Scholar

[17] E.S.D. Unit. Index. Engineering Sciences Data Unit.

Google Scholar

[18] S.G. Zhang, W. Lei, M.Z. Xia, F.Y. Wang. QSAR study on N-containing corrosion inhibitors: Quantum chemical approach assisted by topological index. Journal of Molecular Structure: THEOCHEM. 732 (2005), 173-182.

DOI: 10.1016/j.theochem.2005.02.091

Google Scholar

[19] J.R. Mohallem, T. de O. Coura, L.G. Diniz, G. de Castro, D. Assafrão, T. Heine. Adiabatic corrections to density functional theory energies and wave functions. The Journal of Physical Chemistry A. 112 (2008), 8896-8901.

DOI: 10.1021/jp800732a

Google Scholar

[20] K.F.K.A. Abdel-Shafi. Quantitative structure and activity relationship modeling study of corrosion inhibitors: genetic function approximation and molecular dynamics simulation methods. Int. J. Electrochem. Sci. 6 (2011), 4077-4094.

DOI: 10.1016/s1452-3981(23)18312-x

Google Scholar