Thermodynamic Calculation of Bi-Au-Lu, Nd Ternary Systems

Article Preview

Abstract:

With available melting point and hardness, the Bi-based filler alloy is considered as one choice of high-temperature Pb-free solder. Phase diagram can play an important role in the design of new type of Pb-free solder.In the present work, the thermodynamic assessments of the Au-Nd and the Au-Lu binary systems have been carried out by the Calculation of Phase Diagram (CALPHAD) method based on the available experimental data. The Gibbs free energies of the solution phases were described by subregular solution models with the Redlich-Kister equation, and those of the intermetallic compounds were described by sublattice models. A set of self-consistent and reasonable thermodynamic parameters is obtained for the binary systems, which describes the Gibbs energies of the solution phases and the intermetallic compounds phases. Additionally, combined the reported Bi-Au, Bi-Lu and Bi-Nd binary systems, the thermodynamic database of the Bi-Au-Lu and the Bi-Au-Nd ternary systems have been developed, which will provide important thermodynamic information for the phase equilibria of the multicomponent Bi-based alloy systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

444-451

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Takaku,I. Ohnuma, R. Kainuma, Development of Bi-base high-temperature Pb-free solders with second-phase dispersion: Thermodynamic calculation, microstructure, and interfacial reaction, J Electron Mater, 35 (2006) 1516-1523.

DOI: 10.1007/s11664-006-0295-6

Google Scholar

[2] Y.W. Shi, W.P. Fang, Xia Z D, Investigation of rare earth-doped BiAg high-temperature solders, J Mater Sci-Mater EL, 21 (2010) 875-881.

DOI: 10.1007/s10854-009-0010-5

Google Scholar

[3] Y. Yamada, Y. Takaku, Y. Nishibe. Pb-free high temperature solders for power device packaging, Microelectron Reliab, 46 (2006) 1932-(1937).

DOI: 10.1016/j.microrel.2006.07.083

Google Scholar

[4] Q.H. Chen, R.G. Chen, L.R. Xiao, Preparation and characterization of branched polyesteramide / mix rare earth oxides composites, Polym Bull, 62(2009) 209-223.

DOI: 10.1007/s00289-008-0009-8

Google Scholar

[5] C. M. L. Wu, D. Q. Yu, C. M. T. Law, L. Wang, The properties of Sn-9Zn lead-free solder alloys doped with trace rare earth elements, J Electron Mater, 31 (2002) 921-927.

DOI: 10.1007/s11664-002-0184-6

Google Scholar

[6] H.A.J. Oonk, Phase Theory, Elsevier Scientific Publishing Company, Amsterdam, (1981).

Google Scholar

[7] H. Kohler, A.D. Pelton, Calculation of one phase boundary of a binary two-phase region when the other phase boundary is known, CALPHAD, 6 (1982)39-47.

DOI: 10.1016/0364-5916(82)90014-1

Google Scholar

[8] B. Sundman, B. Jansson, and J.O. Anderson, The Thermo-Calc databank system, CALPHAD, 9 (1985) 153-190.

DOI: 10.1016/0364-5916(85)90021-5

Google Scholar

[9] I. Ohnuma, X.J. Liu, H. Ohtani, Thermodynamic database for phase diagrams in micro-soldering alloys, J Electron Mater, 28 (1999) 1164-1171.

DOI: 10.1007/s11664-999-0152-5

Google Scholar

[10] O. Redlich and A.T. Kister, Algebraic representation of thermodynamic properties and the classification of solutions, Ind. Eng. Chem., 40 (1948) 345-348.

DOI: 10.1021/ie50458a036

Google Scholar

[11] M. Hillert and L.I. Staffansson, The Regular Solution Model for Stoichiometric Phases and Ionic Melts, Acta Chem. Scand., 24 (1970) 3618-3626.

DOI: 10.3891/acta.chem.scand.24-3618

Google Scholar

[12] S.L. Chen, S. Daniel, F. Zhang, et al. The PANDAT software package and its applications CALPHAD, 26 (2002) 175-188.

DOI: 10.1016/s0364-5916(02)00034-2

Google Scholar

[13] W.E. Dwight, ANL-6330, Argonne National Laboratory, Argonne, IL (1960).

DOI: 10.2172/759330

Google Scholar

[14] P.E. Rider, K.A. Gschneidner, Jr., and O.D. McMasters, Gold-rich rare-earth-gold solid solutions, Trans. AIME, 233 (1965) 1488-1496.

Google Scholar

[15] O.D. McMasters, K.A. Gschneidner, Jr., G. Bruzzone, and A. Palenzona, Stoichiometry, crystal structures and some melting points of the lanthanide-gold alloys, J. Less-Common Met., 135 25 (1971) 135-160.

DOI: 10.1016/0022-5088(71)90125-1

Google Scholar

[16] Moffat, W.G., Binary Phase Diagrams Handbook, General Electric Comp, Schenectady, N.Y., (1977).

Google Scholar

[17] K. Fitzner, O.J. Kleppa, Thermochemistry of Binary Alloys of Transition Metals: The Systems Me-Gd, Me-Ho, and Me-Lu (Me-Cu, Ag, Au). Met all. Mater. Trans A., 28A (1997) 1495-1500.

DOI: 10.1007/s11661-997-0094-6

Google Scholar

[18] J. Wang, F.G. Meng, H.S. Liu, L.B. Liu and Z.P. Jin, Thermodynamic Modeling of the Au-Bi-Sb Ternary System, J Electron Mater, 36 (2007) 568-577.

DOI: 10.1007/s11664-007-0090-z

Google Scholar

[19] S.L. Wang, F. Gao, S.X. Gan, C.P. Wang, X.J. Liu, Thermodynamic assessments of the Bi-Lu and Lu-Sb systems, CALPHAD, 35 (2011) 421-426.

DOI: 10.1016/j.calphad.2011.05.003

Google Scholar

[20] A. Saccone, D. Maccio, S. Delfino, and R. Ferro. The Neodymium-Gold Phase Diagram. Met all. Mater. Trans., A30 (1999) 1169-1176.

DOI: 10.1007/s11661-999-0266-7

Google Scholar

[21] K. Fitzner and O.J. Kleppa. Thermochemistry of Binary Alloys of Transition Met als: The Systems Cu-Ce, Me-Pr, and Me-Nd (Me-Cu, Ag, Au). Met all. Mater. Trans A., 25A (1994) 1495-1500.

DOI: 10.1007/bf02665481

Google Scholar

[22] C.P. Wang, H.L. Zhang, A.T. Tang, et al. Thermodynamic assessments of the Bi-Nd and Bi-Tm systems. Journal of Alloys and Compounds, 502(2010) 43-48.

DOI: 10.1016/j.jallcom.2010.03.042

Google Scholar