Estimation of Average Strain Rate during Equal-Channel Angular Pressing

Article Preview

Abstract:

In plastic deformation, the strain rate is a crucial factor to influence the constitutive behavior of materials such as the flow stress evolution, dislocation slipping, and deformation heat generation. In the present work, a formula based on the volume flow rate rule in plastic deformation was proposed to estimate the average strain rate of materials during equal-channel angular pressing (ECAP). It has been found that both the deformation parameters (channel angle Φ, corner angle Ψ, channel width d, and pressing speed v) and material characteristics (strain hardening behavior) can influence the average strain rate during ECAP. The present model was compared with two other models for estimating the strain rate and numerical values calculated by four different finite element methods (FEM). The result of the present model is in good agreement with the numerical strain rate values by FEM at various values for channel angle Φ and corner angle Ψ.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

419-425

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.M. Segal: Mater. Sci. Eng. A 197 (1995) 157-164.

Google Scholar

[2] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov: Prog. Mater Sci. 45 (2000) 103-189.

Google Scholar

[3] R.Z. Valiev, T.G. Langdon: Prog. Mater Sci. 51 (2006) 881-981.

Google Scholar

[4] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon: Scr. Mater. 35 (1996) 143-146.

Google Scholar

[5] I. Balasundar, T. Raghu: Mater. Des. 31 (2010) 449-457.

Google Scholar

[6] S.C. Yoon, P. Quang, S.I. Hong, H.S. Kim: J. Mater. Process. Technol. 187-188 (2007) 46-50.

Google Scholar

[7] I. Balasundar, M. Sudhakara Rao, T. Raghu: Mater. Des. 30 (2009) 1050-1059.

Google Scholar

[8] S.L. Semiatin, D.P. DeLo, E.B. Shell: Acta Mater. 48 (2000) 1841-1851.

Google Scholar

[9] Q.X. Pei, B.H. Hu, C. Lu, Y.Y. Wang: Scr. Mater. 49 (2003) 303-308.

Google Scholar

[10] H.S. Kim, M.H. Seo, S.I. Hong: J. Mater. Process. Technol. 113 (2001) 622-626.

Google Scholar

[11] K. Nakashima, Z. Horita, M. Nemoto, T.G. Langdon: Mater. Sci. Eng. A 281 (2000) 82-87.

Google Scholar

[12] H.S. Kim: J. Mater. Res. 17 (2002) 172-179.

Google Scholar

[13] Y.G. Ko, D.Y. Hwang, D.H. Shin, S. Lee, C.S. Lee: Mater. Sci. Eng. A 493 (2008) 164-169.

Google Scholar

[14] F. Kang, J.T. Wang, Y. Peng: Mater. Sci. Eng. A 487 (2008) 68-73.

Google Scholar

[15] P. Berbon, M. Furukawa, Z. Horita, M. Nemoto, T. Langdon: Metall and Mat Trans A 30 (1999) 1989-(1997).

Google Scholar

[16] S. Li, M.A.M. Bourke, I.J. Beyerlein, D.J. Alexander, B. Clausen: Mater. Sci. Eng. A 382 (2004) 217-236.

Google Scholar

[17] F. Kang, J. Wang, Y. Su, K. Xia: J. Mater. Sci. 42 (2007) 1491-1500.

Google Scholar

[18] V. Patil Basavaraj, U. Chakkingal, T.S. Prasanna Kumar: J. Mater. Process. Technol. 209 (2009) 89-95.

Google Scholar

[19] H.S. Kim, M.H. Seo, S.I. Hong: Mater. Sci. Eng. A 291 (2000) 86-90.

Google Scholar