[1]
B. H. Kear, E. R. Thompson, Aircraft gas turbine material and process, Science. 208 (1980) 847-856.
DOI: 10.1126/science.208.4446.847
Google Scholar
[2]
J. Zhang, L.H. Lou and H. Li, Material and processing technology of directionally solidified blade in heavy duty industrial gas turbines, Mater China. 32 (2013) 12-23.
Google Scholar
[3]
H. Zhang, Q. Y. Xu and B. C. Liu, Numerical simulation of microstructure evolution during directional solidification process in directional solidified (DS) turbine blades, Sci. China. 54 (2011) 3191-3202.
DOI: 10.1007/s11431-011-4607-6
Google Scholar
[4]
A. J. Elliott, PhD thesis, Directional solidification of large cross-section Ni-base superalloy casting via liquid-metal cooling, University of Michigan, (2005).
Google Scholar
[5]
L. Hao, PhD thesis, Development of the shell casting technology for downwards directional solidification, RWTH Aachen, (2013).
Google Scholar
[6]
Y.G. Nakagawa, Y. Ohotomo, and Y. Saiga, Heat treatment, microstructure, and creep strength of γ/γ'-α eutectic directionally solidified by fluidized bed quenching, superalloys. (1980) 267-274.
DOI: 10.7449/1980/superalloys_1980_267_274
Google Scholar
[7]
L.D. Graham, B.L. Rauguth, U.S. Patent 6, 443, 213. (2002).
Google Scholar
[8]
J. G. Tschinkel, A. F. Giamei and B. H. Kearn. U.S. Patent 3, 763, 926. (1973).
Google Scholar
[9]
A.F. Giamei, J.G. Tschinkel, Liquid metal cooling: a new solidification technique, Metall. Trans. A. 7A (1976), 1427-1434.
DOI: 10.1007/bf02658829
Google Scholar
[10]
A. Kermanpur, N. Varahram and M. Rappaz, Thermal and grain-structure simulation in a land-based turbine blade directionally solidified with the liquid metal cooling process, Metall. Trans. B. 31B (2000) 1293-1304.
DOI: 10.1007/s11663-000-0017-z
Google Scholar
[11]
A. J. Elliott, S. Tin and T. M. Pollock, Directional solidification of large superalloy casting with radiation and liquid-metal cooling: a comparative assessment, Metall. Trans. A. 35A (2004) 3221-3231.
DOI: 10.1007/s11661-004-0066-z
Google Scholar
[12]
A. Kermanpur, M. Mehrara and P. Davami, Improvement of grain structure and mechanical properties of a land based gas turbine blade directionally solidified with liquid metal cooling process, Mater Sci. Tech. 24 (2008) 100-106.
DOI: 10.1179/174328407x239109
Google Scholar
[13]
J. D. Miller, L. Yuan, P. D. Lee and T. M. Pollock, Simulation of diffusion-limited lateral growth of dendrites during solidification via liquid metal cooling, Acta Mater. 69 (2014) 47-59.
DOI: 10.1016/j.actamat.2014.01.035
Google Scholar
[14]
Y. Z. Lu, H. J. Xi and J. Zhang, Simulation and experiment of solidification process for directionally solidified industrial gas turbine hollow blades prepared by liquid metal cooling, Acta Metall. Sin. (2015).
Google Scholar
[15]
N. Tang, X. W. Yan, Q. Y. Xu and B. C. Liu, Numerical simulation of solidification characteristics of blades by LMC based on secondary development of ProCAST, Foundry. 63 (2014) 347-351.
Google Scholar
[16]
C. A. Gandin, M. Rappaz, A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification process, Acta Metall. Mater. 42 (1993) 2233-2246.
DOI: 10.1016/0956-7151(94)90302-6
Google Scholar
[17]
L. Nastac, Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys, Acta Mater. 47 (1999) 4253-4262.
DOI: 10.1016/s1359-6454(99)00325-0
Google Scholar
[18]
W. Kurz, B. Giovanola and R. Trivedi, Theory of microstructural development during rapid solidification, Acta Metall. 34 (1986) 823-830.
DOI: 10.1016/0001-6160(86)90056-8
Google Scholar
[19]
S. Karagadde, L. Yuan, and P. L. Lee, 3-D microstructural model of freckle formation validated using in situ experiments, Acta Mater. 79 (2014) 168-180.
DOI: 10.1016/j.actamat.2014.07.002
Google Scholar
[20]
D. X. Ma, A. B. Polaczek, The geometrical effect on freckle formation in the directionally solidified superalloy CMSX-4, Metall. Trans. A. 45A (2014) 1435-1444.
DOI: 10.1007/s11661-013-2088-x
Google Scholar