[1]
C.X. Cui, B.M. Hu, L.C. Zhao, S.J. Liu, Titanium alloy production technology, market prospects and industry development, Mater. Des. 32(2011) 1684-1691.
DOI: 10.1016/j.matdes.2010.09.011
Google Scholar
[2]
J.C. Williams, E.A. Starke Jr., Progress in structural materials for aerospace systems, Acta Mater. 51(2003) 5775-5799.
Google Scholar
[3]
W.J. Rechards, J.R. Barrett, M.E. Springgate, K.C. Shields, Neutron radiography inspection of investment castings, Appl. Radiat. Isot. 61(2004) 675-682.
DOI: 10.1016/j.apradiso.2004.03.122
Google Scholar
[4]
S.P. Wu, C.Y. Li, J.J. Guo, Y.Q. Su, X.Q. Lei, H.Z. Fu, Numerical simulation and experimental investigation of two filling methods in vertical centrifugal casting, Trans. Nonferrous Metal. Soc. Ch. 16(2006) 1035-1040.
DOI: 10.1016/s1003-6326(06)60373-7
Google Scholar
[5]
K. Suzuki, M. Yao, Simulation of Mold Filling and Solidification during Centrifugal Precision Casting of Ti-6Al-4V Alloy, Met. Metal. Int. 10(2004) 33-38.
DOI: 10.1007/bf03027361
Google Scholar
[6]
C.Y. Li, H.Y. Wang, S.P. Wu, L. Xu, K.F. Wang, H.Z. Fu, Research on Mould Filling and Solidification of Titanium Alloy in Vertical Centrifugal Casting, Rare Metal Mat. Eng. 39(2010) 388-392.
DOI: 10.1016/s1875-5372(10)60085-9
Google Scholar
[7]
H. Shimizu, T. Habu, Y. Takada, K. Watanabe, O. Okuno, T. Okabe, Mold filling of titanium alloys in two different wedge-shaped molds, Biomaterials. 23(2002) 2275-2281.
DOI: 10.1016/s0142-9612(01)00357-x
Google Scholar
[8]
P.C.G. Oliveira, G.L. Adabo, R.F. Ribeiro, S.S. Rocha, The effect of mold temperature on castability of CP Ti and Ti–6Al–4V castings into phosphate bonded investment materials, Dent. Mater. 22(2006) 1098-1102.
DOI: 10.1016/j.dental.2005.09.004
Google Scholar
[9]
M. Koike, A. Krysiak, K.S. Chan, L. Guo, T. Okabe, Effect of centrifugal rotational speed on wedge castability of titanium. J. Mater. Process. Technol. 211(2011) 560-565.
DOI: 10.1016/j.jmatprotec.2010.10.022
Google Scholar
[10]
W.W. Cheng, J.H. Chern Lin, C.P. Ju, Bismuth effect on castability and mechanical properties of Ti–6Al–4V alloy cast in copper mold, Mater. Lett. 57(2003) 2591-2596.
DOI: 10.1016/s0167-577x(02)01316-2
Google Scholar
[11]
K. Watanabe, O. Miyakawa, Y. Takada, O. Okuno, T. Okabe, Casting behavior of titanium alloys in a centrifugal casting machine, Biomaterials. 24(2003) 1737–1743.
DOI: 10.1016/s0142-9612(02)00583-5
Google Scholar
[12]
J. Fischer, A. Ebinger, T. Hägi, B. Stawarczyk, A. Wenger, E. Keller, Mold filling and dimensional accuracy of titanium castings in a spinel-based investment, Dent. Mater. 25(2009) 1376–1382.
DOI: 10.1016/j.dental.2009.06.012
Google Scholar
[13]
C.C. Hung, P.L. Lai, C.C. Tsai, T.K. Huang, Y.Y. Liao, Pure titanium casting into titanium-modified calcia-based and magnesia-based investment molds, Mater. Sci. Eng., A, 454–455 (2007) 178–182.
DOI: 10.1016/j.msea.2006.11.044
Google Scholar
[14]
S.P. Wu, J.J. Guo, J. Jia, Numerical simulation of mold filling and solidification of TiAl base alloy exhaust valve in vertical centrifugal casting process, Acta. Metall. Sin. 40(2004) 326-330.
Google Scholar
[15]
H. S. Al-Mesmar, S. M. Morgano, L. E. Mark, Investigation of the effect of three sprue designs on the porosity and the completeness of titanium cast removable partial denture frameworks, J. Prosthet. Dent. 82(1999) 15-21.
DOI: 10.1016/s0022-3913(99)70126-5
Google Scholar
[16]
H. Wang, G. Djambazov, K.A. Pericleous, R.A. Harding, M. Wickins, Modelling the dynamics of the tilt-casting process and the effect of the mould design on the casting quality, Comput. Fluids, 42 (2011) 92–101.
DOI: 10.1016/j.compfluid.2010.11.010
Google Scholar
[17]
H. Shao, Y. Li, H. Nan, Q.Y. Xu, Research on the interfacial heat transfer coefficient between casting and ceramic shell in investment casting process of Ti6Al4V alloy, Acta. Metall. Sin. 51(2015) 976-984.
Google Scholar