Effect of the Spinning Deformation Processing on Microstructure and Mechanical Properties of A356 Wheels

Article Preview

Abstract:

The influences of spinning deformation and heat treatment on microstructure and tensile properties of A356 alloy at different cooling rates were investigated in this study by optical and scanning electron microscopes. The results indicated that spinning deformation enhanced the tensile properties of the alloy due to the reduction of Si size and porosity percentage, especially in the samples with coarse microstructure. Heat treatment increased the strength while decreased the ductility of the alloy because of the precipitation of brittle Mg2Si in Al matrix. It is suggested that the spinning deformation processing is an effective technique to produce A356 alloy wheels with high mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

526-531

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.C. Wang, N. Zhou, W.J. Qi, K.H. Zheng, Microstructure and mechanical properties of A356 aluminum alloy wheels prepared by thixo-forging combined with a low superheat casting process. T Nonferr Metal Soc. 24(2014) 2214-2219.

DOI: 10.1016/s1003-6326(14)63335-5

Google Scholar

[2] Q.G. Wang, Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357, Metall Mater Trans A. 34(2003), 2887-2899.

DOI: 10.1007/s11661-003-0189-7

Google Scholar

[3] B. Zhang, D.M. Maijer, S.L. Cockcroft, Development of a 3-D thermal model of the low-pressure die-cast (LPDC) process of A356 aluminum alloy wheels. Mat. Sci. Eng. A. 464 (2007) 295-305.

DOI: 10.1016/j.msea.2007.02.018

Google Scholar

[4] K. Lee, Y.N. Kwon, S. Lee, Correlation of microstructure with mechanical properties and fracture toughness of A356 aluminum alloys fabricated by low-pressure-casting, rheo-casting, and casting-forging processes. Eng Fract Mech. 75(2008) 4200-4216.

DOI: 10.1016/j.engfracmech.2008.04.004

Google Scholar

[5] Y.C. Cheng, C.K. Lin, A.H. Tan, S.Y. Hsu, S.L. Lee, Effect of the spinning deformation processing on mechanical properties of Al-7Si-0. 3 Mg alloys. J Mater Eng Perform. 21(2012) 1873-1878.

DOI: 10.1007/s11665-011-0089-8

Google Scholar

[6] Y.C. Cheng, C.K. Lin, A.H. Tan, J.C. Lin, S.L. Lee, Effect of spinning deformation processing on the wear and corrosion properties of Al-7Si-0. 3 mg alloys. Mater Manuf Process, 25(2010) 689-695.

DOI: 10.1080/10426914.2010.489628

Google Scholar

[7] E. Quigley, J. Monaghan, Metal forming: an analysis of spinning processes. J Mater Process Tech, 103(2000) 114-119.

Google Scholar

[8] S. Tahamtan, A.F. Boostani, H. Nazemi, Mechanical properties and fracture behavior of thixoformed, rheocast and gravity-cast A356 alloy. J Alloy Compd, 468(2009) 107-114.

DOI: 10.1016/j.jallcom.2007.12.079

Google Scholar

[9] C.D. Lee, Effects of microporosity on tensile properties of A356 aluminum alloy. Mat. Sci. Eng. A, 464(2007) 249-254.

DOI: 10.1016/j.msea.2007.01.130

Google Scholar

[10] K. Lee, Y.N. Kwon, S. Lee, Effects of eutectic silicon particles on tensile properties and fracture toughness of A356 aluminum alloys fabricated by low-pressure-casting, casting-forging, and squeeze-casting processes. J Alloy Compd, 461(2008).

DOI: 10.1016/j.jallcom.2007.07.038

Google Scholar

[11] J.G. Conley, J. Huang, J. Asada, K. Akiba, Modeling the effects of cooling rate, hydrogen content, grain refiner and modifier on microporosity formation in Al A356 alloys. Mat. Sci. Eng. A, 285(2000) 49-55.

DOI: 10.1016/s0921-5093(00)00665-1

Google Scholar

[12] A.S. Sabau, Alloy shrinkage factors for the investment casting process. Metall Mater Trans B, 37(2006) 131-140.

DOI: 10.1007/s11663-006-0092-x

Google Scholar

[13] A.S. Sabau, S. Viswanathan, Porosity prediction in AluminumA356 Alloy Castings. Oak Ridge, Tennessee, (2008).

Google Scholar

[14] M. Haghshenas, A. Zarei-Hanzaki, M. Jahazi, An investigation to the effect of deformation-heat treatment cycle on the eutectic morphology and mechanical properties of a Thixocast A356 alloy. Mater Charact, 60(2009) 817-823.

DOI: 10.1016/j.matchar.2009.01.020

Google Scholar

[15] Q.G. Wang, Plastic deformation behavior of aluminum casting alloys A356/357. Metall Mater Trans A. 35(2004) 2707-2718.

DOI: 10.1007/s11661-004-0216-3

Google Scholar

[16] G. Ran, J. Zhou, Q.G. Wang, The effect of hot isostatic pressing on the microstructure and tensile properties of an unmodified A356-T6 cast aluminum alloy. J Alloy Compd, 421(2006) 80-86.

DOI: 10.1016/j.jallcom.2005.11.019

Google Scholar

[17] Q.G. Wang, C.H. Caceres, J.R. Griffiths, Damage by eutectic particle cracking in aluminum casting alloys A356/357. Metall Mater Trans A, 34(2003) 2901-2912.

DOI: 10.1007/s11661-003-0190-1

Google Scholar

[18] M. Merlin, G. Timelli, F. Bonollo, G.L. Garagnani, Impact behaviour of A356 alloy for low-pressure die casting automotive wheels. J Mater Process Tech, 209(2009) 1060-1073.

DOI: 10.1016/j.jmatprotec.2008.03.027

Google Scholar