[1]
S.C. Wang, N. Zhou, W.J. Qi, K.H. Zheng, Microstructure and mechanical properties of A356 aluminum alloy wheels prepared by thixo-forging combined with a low superheat casting process. T Nonferr Metal Soc. 24(2014) 2214-2219.
DOI: 10.1016/s1003-6326(14)63335-5
Google Scholar
[2]
Q.G. Wang, Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357, Metall Mater Trans A. 34(2003), 2887-2899.
DOI: 10.1007/s11661-003-0189-7
Google Scholar
[3]
B. Zhang, D.M. Maijer, S.L. Cockcroft, Development of a 3-D thermal model of the low-pressure die-cast (LPDC) process of A356 aluminum alloy wheels. Mat. Sci. Eng. A. 464 (2007) 295-305.
DOI: 10.1016/j.msea.2007.02.018
Google Scholar
[4]
K. Lee, Y.N. Kwon, S. Lee, Correlation of microstructure with mechanical properties and fracture toughness of A356 aluminum alloys fabricated by low-pressure-casting, rheo-casting, and casting-forging processes. Eng Fract Mech. 75(2008) 4200-4216.
DOI: 10.1016/j.engfracmech.2008.04.004
Google Scholar
[5]
Y.C. Cheng, C.K. Lin, A.H. Tan, S.Y. Hsu, S.L. Lee, Effect of the spinning deformation processing on mechanical properties of Al-7Si-0. 3 Mg alloys. J Mater Eng Perform. 21(2012) 1873-1878.
DOI: 10.1007/s11665-011-0089-8
Google Scholar
[6]
Y.C. Cheng, C.K. Lin, A.H. Tan, J.C. Lin, S.L. Lee, Effect of spinning deformation processing on the wear and corrosion properties of Al-7Si-0. 3 mg alloys. Mater Manuf Process, 25(2010) 689-695.
DOI: 10.1080/10426914.2010.489628
Google Scholar
[7]
E. Quigley, J. Monaghan, Metal forming: an analysis of spinning processes. J Mater Process Tech, 103(2000) 114-119.
Google Scholar
[8]
S. Tahamtan, A.F. Boostani, H. Nazemi, Mechanical properties and fracture behavior of thixoformed, rheocast and gravity-cast A356 alloy. J Alloy Compd, 468(2009) 107-114.
DOI: 10.1016/j.jallcom.2007.12.079
Google Scholar
[9]
C.D. Lee, Effects of microporosity on tensile properties of A356 aluminum alloy. Mat. Sci. Eng. A, 464(2007) 249-254.
DOI: 10.1016/j.msea.2007.01.130
Google Scholar
[10]
K. Lee, Y.N. Kwon, S. Lee, Effects of eutectic silicon particles on tensile properties and fracture toughness of A356 aluminum alloys fabricated by low-pressure-casting, casting-forging, and squeeze-casting processes. J Alloy Compd, 461(2008).
DOI: 10.1016/j.jallcom.2007.07.038
Google Scholar
[11]
J.G. Conley, J. Huang, J. Asada, K. Akiba, Modeling the effects of cooling rate, hydrogen content, grain refiner and modifier on microporosity formation in Al A356 alloys. Mat. Sci. Eng. A, 285(2000) 49-55.
DOI: 10.1016/s0921-5093(00)00665-1
Google Scholar
[12]
A.S. Sabau, Alloy shrinkage factors for the investment casting process. Metall Mater Trans B, 37(2006) 131-140.
DOI: 10.1007/s11663-006-0092-x
Google Scholar
[13]
A.S. Sabau, S. Viswanathan, Porosity prediction in AluminumA356 Alloy Castings. Oak Ridge, Tennessee, (2008).
Google Scholar
[14]
M. Haghshenas, A. Zarei-Hanzaki, M. Jahazi, An investigation to the effect of deformation-heat treatment cycle on the eutectic morphology and mechanical properties of a Thixocast A356 alloy. Mater Charact, 60(2009) 817-823.
DOI: 10.1016/j.matchar.2009.01.020
Google Scholar
[15]
Q.G. Wang, Plastic deformation behavior of aluminum casting alloys A356/357. Metall Mater Trans A. 35(2004) 2707-2718.
DOI: 10.1007/s11661-004-0216-3
Google Scholar
[16]
G. Ran, J. Zhou, Q.G. Wang, The effect of hot isostatic pressing on the microstructure and tensile properties of an unmodified A356-T6 cast aluminum alloy. J Alloy Compd, 421(2006) 80-86.
DOI: 10.1016/j.jallcom.2005.11.019
Google Scholar
[17]
Q.G. Wang, C.H. Caceres, J.R. Griffiths, Damage by eutectic particle cracking in aluminum casting alloys A356/357. Metall Mater Trans A, 34(2003) 2901-2912.
DOI: 10.1007/s11661-003-0190-1
Google Scholar
[18]
M. Merlin, G. Timelli, F. Bonollo, G.L. Garagnani, Impact behaviour of A356 alloy for low-pressure die casting automotive wheels. J Mater Process Tech, 209(2009) 1060-1073.
DOI: 10.1016/j.jmatprotec.2008.03.027
Google Scholar