Applications of New Types of Biomaterials Obtained by Fungal Solid-State Fermentation in Bakery Products Manufacturing

Article Preview

Abstract:

Cereals serve as major food supply for human population. The cereals are rich source of carbohydrates and some proteins, but they are limited in various biologically active compounds such as polyunsaturated fatty acids, carotenoid pigments, coenzyme Q10, etc. Therefore value-added cereal-derived biomaterials have been prepared by the fungal solid state fermentations that could be attractive in food/feed industry. Application of fermented biomaterials into bakery products does not only enrich the final products with new compound (PUFA, ergosterol, etc), but very significantly change the rheological and nutritional and properties of dough and breads such as dough development time and stability, content of starch, glucans, dietary fibre, etc. Sensorial quality of these new products is acceptable for customers. Thus, biotechnologically prepared PUFA-enriched cereals may open novel prospects for the market of functional cereal foods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

14-19

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Information on http: /faostat3. fao. org/compare/E.

Google Scholar

[2] Food consumpution in the SR, Statistical Office of Slovak Republic.

Google Scholar

[3] B. McKevith, Nutritional ascpets of cereals, Nutrition Bulletin 29(2004) 111-142.

Google Scholar

[4] L. Cordain, Cereal grains: humanity's double-edged sword, World Rev. Nutr. Diet 84 (1999) 19–73.

DOI: 10.1159/000059677

Google Scholar

[5] P. Sood, A. Bhattacharya, A. Sood, Problems and possibilities of monocot transformation, Biol. Plant 55 (2011) 1-15.

DOI: 10.1007/s10535-011-0001-2

Google Scholar

[6] D. Mihalik, M. Gubisova, T. Klempova, M. Certik, K. Ondreickova, M. Hudcovicova, L. Klcova, J. Gubis, I. Dokupilova, L. Ohnoutkova, J. Kraic, Transformation of barley with artificial gene encoding for delta-6-desaturase, Biol. Plantarum 58 (2014).

DOI: 10.1016/j.copbio.2013.05.390

Google Scholar

[7] R.R. Singhania, A.K. Patel, C.R. Soccol, A. Pandey, Recent advances in solid-state fermentation, Biochem. Eng. J. 44 (2009) 13-18.

DOI: 10.1016/j.bej.2008.10.019

Google Scholar

[8] M. Čertík, T. Klempová, L. Guothová, D. Mihálik, J. Kraic, Biotechnology for the functional improvement of cereal-based materials enriched with polyunsaturated fatty acids and pigments, Eur. J. Lipid. Sci. Tech. 115 (2013) 1247-1256.

DOI: 10.1002/ejlt.201300092

Google Scholar

[9] L. Sláviková, M. Čertík, S. Masrnová, B. Škrinárová, Ľ. Valík, J. Šajbidor, Effect of moisture and water activity on g-linolenic acid production in solid state fermentation, Chem Listy 96 (2002) 81-182.

Google Scholar

[10] T. Klempova, E. Basil, A. Kubatova, M. Certik, Biosynthesis of gamma-linolenic acid and beta-carotene by Zygomycetes fungi, Biotechnol. J. 8 (2013) 794-800.

DOI: 10.1002/biot.201200099

Google Scholar

[11] C.L. Gerez, M.I. Torino, G. Rollán, G. Font de Valdez, Prevetion of bread mould spoilage by using lactic acid bacteria with antifungal properties, Food Control, 20 (2009) 144-148.

DOI: 10.1016/j.foodcont.2008.03.005

Google Scholar

[12] L.A.M. Ryan, F. Dal Bello, A.K. Arendt, The use of sourdough fermented by antifungal LAB to reduce the amount of calcium propionate in bread, Int. J. Food Microbiol., 125 (2008) 274-278.

DOI: 10.1016/j.ijfoodmicro.2008.04.013

Google Scholar

[13] C.G. Rizzello, A. Cassone, R. Coda, M. Gobbetti, Antifungal activity of sourdough fermented wheat germ used as an ingredient for bread making, Food Chem., 127 (2011) 952-959.

DOI: 10.1016/j.foodchem.2011.01.063

Google Scholar

[14] A. Corsetti, L. Settanni, Lactobacilli in sourdough fermentation, Food Res. Int., 40 (2007) 539-558.

DOI: 10.1016/j.foodres.2006.11.001

Google Scholar

[15] M. Čertík, M., Z. Adamechová, L. Guothová, Simultaneous enrichment of cereals with polyunsaturated fatty acids and pigments by fungal solid state fermentations, J. Biotechn 168 (2013) 130-134.

DOI: 10.1016/j.jbiotec.2013.03.016

Google Scholar

[16] STN46 1011-37. Testing of cereals, pulses and oilseed. Part 37: Polarometric determination of starch accordign to Ewers.

Google Scholar

[17] A. Moheb, M. Grondin, R.K. Ibrahim, R. Roy, F. Sarhan, Winter wheat hull (husk) is a valuable source for tricin, a potential selective cytotoxic agent, Food Chem., 138 (2013) 931-937.

DOI: 10.1016/j.foodchem.2012.09.129

Google Scholar

[18] L. Fu, J. Tian, C. Sun, Ch. Li, RVA and pharinograph properties Study on Blends of Resistant Starch and Wheat Flour, Agr, Sci, China, 7 (2008) 812-822.

DOI: 10.1016/s1671-2927(08)60118-2

Google Scholar

[19] M.L. Sudha, R. Vetrimani, K. Leevathi, Influence of fibre from different cereals on the rheological characteristics of wheat flour dough and on biscuit quality, Food Chem., 100 (2007) 1365-1370.

DOI: 10.1016/j.foodchem.2005.12.013

Google Scholar