Removal of Copper (II) Ions from Aqua Growth Medium by Red Yeast

Article Preview

Abstract:

Copper is a natural fungicide and is the active component of various pesticides. We detected uptake of higher concentration of the copper ions and responses to this stress in combination with presence hydrogen peroxide as a source of free radicals were studied on the three red yeast strains of species Rhodotorula glutinis (two strains) and Sporobolomyces roseus (one strain). The maximum Cu sorption was observed at the cells of strain Rhodotorula glutinis CCY 20-2-33 (25,18 mg/g dry weight) and at their exopolymers which accumulated the amount 10.22 mg/g dry weight. The remaining copper was sorbed onto the fibrillar part of cell wall (3.75 mg/g dry weight). The presence peroxide (oxidative stress) in cultivation medium decreased of the toleration of yeasts to Cu2+ ions and cells were able to take up less of about 17 % (from 3mM on 2,5 mM), although total uptake was lower about 11.01-15.96 %. We found that the strains of Rhodotorula glutinis are able to uptake about 44 % more copper ions (25.18-24.32 mg/g dry weight) in compared with strain of Sporobolomyces roseus (16.92 dry weight). However, the addition of peroxide into the cultivation medium the addition of affecting trade changes by reduce of the ability to uptake Cu2+ ions. The exopolymers and fibrillar part of cell wall these yeast were used as biopolymers with high sorption ability for metals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-7

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.C. Linder , M. Hazegh-Azam, Copper biochemistry and molecular biology, Am J Clin Nutr. 63 (1996) 797S-811S.

Google Scholar

[2] E. Salinas, M. Elorza de Orellano , I. Rezza L. Martinez , E. Marchesvky, M. Sanz de Tosetti, Removal of cadmium and lead from dilute aqueous solutions by Rhodotorula rubra, Bioresource Technology 72 (2000) 107-112.

DOI: 10.1016/s0960-8524(99)00111-x

Google Scholar

[3] A. Kapoor, , T. Viraraghavan, Fungal biosorption: an alternative treatment option for heavy metal bearing wastewaters, A review. Bioresource Technology. 53 (1995) 195-206.

DOI: 10.1016/0960-8524(95)00072-m

Google Scholar

[4] C. Cojocaru, M. Diaconu, I. Cretescu I., J. Savič, V. Vasič, Biosorption of copper(II) ions from aqua solutions using dried yeast biomass, Colloids and Surfaces A: Physicochem. Engin. Asp. 335 (2009) 181-188.

DOI: 10.1016/j.colsurfa.2008.11.003

Google Scholar

[5] M.T. Vidal, M. Poblet, , M. Constanti, and Bordons, A., Inhibitory effect of copper and dichlofluanid on Oenococcus oeni and malolactic fermentation, Am. J. Enol. Viticult. 52 (2001) 223–229.

DOI: 10.5344/ajev.2001.52.3.223

Google Scholar

[6] S.V. Avery, , N.G. Howlett, S. Radice, Copper toxicity towards Saccharomyces cerevisiae : Dependence on plasma membrane fatty acid composition. Appl. Environ. Microbiol. 62 (1996) 3960–3966.

DOI: 10.1128/aem.62.11.3960-3966.1996

Google Scholar

[7] A. Presta, M. J. Stillraan, Incorporation of copper into the yeast Saccharomyces cerevisiae. identification of Cu(I)-Metallothionein in intact yeast cells. J. Inorg. Biochem. 66 (1997) 231–240.

DOI: 10.1016/s0162-0134(96)00216-4

Google Scholar

[8] M. Azenha, M.T. Vasconcelos, P. Moradas-Ferreira, The influence of Cu concentration on ethanolic fermentation by Saccharomyces cerevisiae . J. Biosci. Bioengin. 90 (2000) 163–167.

DOI: 10.1016/s1389-1723(00)80104-8

Google Scholar

[9] G. Dönmez, Z. Aksu, Bioaccumulation of copper (II) and nickel (II) by the nonadapted and adapted growing Candida sp. Water Res. 35 (2001)1425-1434.

DOI: 10.1016/s0043-1354(00)00394-8

Google Scholar

[10] P. Davoli, R.W.S. Weber, Carotenoid pigments from the red mirror yeast, Sporobolomyces roseus. Mycologist. 16 (2002) 102-108.

DOI: 10.1017/s0269915x02001027

Google Scholar

[11] E. Breierová, M. Čertík, A. Kovárová, T. Gregor, Biosorption of nickel by yeasts in an osmotically unsuitable environment. Zeitsch. Naturforschung C J. Biosc., 63 (2008) 873-878.

DOI: 10.1515/znc-2008-11-1215

Google Scholar

[12] A.R. Sergio, M.D. Paiva, R. M. Russell, MD ß-Carotene and Other Carotenoids as Antioxidants J. Am. Coll. Nutr., 18 (1999) 426–433.

Google Scholar

[13] E. Breierova, E. Stratilova, J. Šajbidor, Production of Extracellular Polymers by Yeast-like Genera Dipodascus and Dipodascopsis under NaCl Stress Folia Microbiol. 41 (1996) 257-263.

DOI: 10.1007/bf02814627

Google Scholar

[14] E. Stratilová, E. Breierová, R. Vadkertiová, E. Machová, A. Malovíková, E. Sláviková, The adaptability of the methylotrophic yeast Candida boidinii on media containing pectic substances. Canad.J. Microbiol. 44 (1996) 116-120.

DOI: 10.1139/w97-142

Google Scholar

[15] Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F., Colorimetric method for determination of sugars and related substances. Analyt. Chem., 28 (1956) 350-356.

DOI: 10.1021/ac60111a017

Google Scholar

[16] Lowry O.H., Rosebrough N.J., Farrand A.J., Randall R.J., Protein measurement. J. Biol. Chem., 193 (1951) 265-275.

Google Scholar

[17] E. Breierová, I. Vajcziková, V. Sasinková, E. Stratilová, M. Fišera, T. Gregor,  J. Šajbidor, Biosorption of cadmium ions by different yeast species. Zeitsch. Naturforschung C J. Biosc., 57 (2002) 634-639.

DOI: 10.1515/znc-2002-7-815

Google Scholar

[18] G.I. Frengova, D.M. Beshkova Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance, J. Ind. Microbiol. Biotechnol 36 (2009) 163-180.

DOI: 10.1007/s10295-008-0492-9

Google Scholar

[19] I.R. Maldonade, D.B. Rodriguez-Amaya, A. R:P. ScampariniCarotenoids of yeasts isolated from the Brazilian ecosystem. Food Chemistry, 107 (2008) 145-150.

DOI: 10.1016/j.foodchem.2007.07.075

Google Scholar

[20] S. Sperstad , B.F. Lutnaes , S.K. Stormo, S. Liaaen-Jensen, B. Landfald, Torularhodin and torulene are the major contributors to the carotenoid pool of marine Rhodosporidium babjevae (Golubev), J. Ind. Microbiol. Biotechnol. 33 (2006) 269-273.

DOI: 10.1007/s10295-005-0065-0

Google Scholar