Preparation and Utilization of Alumina Oxide Membranes for Sensor Devices

Article Preview

Abstract:

This work describes preparation process of free-standing alumina membranes used in sensor devices for separation or purification (increased selectivity, and sensitivity) purposes. Nanoporous alumina membranes were prepared using anodic oxidation of aluminium foil in two types of acidic electrolytes and characterized using scanning electron microscopy. Membranes with pore diameters of 90 nm and 30 nm and thicknesses of 115 µm and 163 µm respectively were obtained. Fabrication of membranes with different post-treatment was also done. In this post-treatment process, etching of non-anodized aluminium and opening of barrier layer were replaced with application of reversible potential with equal magnitude as anodization voltage.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

159-164

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Vida-Simiti I, Nemes D, Jumate N, et al.: Jom, 64 (2012), 10, 1143-1147.

DOI: 10.1007/s11837-012-0406-1

Google Scholar

[2] Sulka G D and Parkola K G: Thin Solid Films, 515 (2006), 1, 338-345.

Google Scholar

[3] Masuda H and Fukuda K: Science, 268 (1995), 5216, 1466-1468.

Google Scholar

[4] Gultepe E, Nagesha D, Sridhar S, et al.: Advanced Drug Delivery Reviews, 62 (2010), 3, 305-315.

DOI: 10.1016/j.addr.2009.11.003

Google Scholar

[5] Ding G Q, Zheng M J, Xu W L, et al.: Nanotechnology, 16 (2005), 8, 1285-1289.

Google Scholar

[6] Pancholi A, Stoleru V G and Kell C D: Nanotechnology, 18 (2007), 21.

Google Scholar

[7] Lim J H and Wiley J B: Journal of Nanoscience and Nanotechnology, 15 (2015), 1, 633-641.

Google Scholar

[8] Zhang J P, Kielbasa J E and Carroll D L: Materials Chemistry and Physics, 122 (2010), 1, 295-300.

Google Scholar

[9] Hrdy R, Kynclova H, Drbohlavova J, et al.: International Journal of Electrochemical Science, 8 (2013), 4, 4384-4396.

Google Scholar

[10] Kynclova H, Pribyl J, Hrdy R, et al. (2014).

Google Scholar

[11] Poinern G E J, Ali N and Fawcett D: Materials, 4 (2011), 3, 487-526.

Google Scholar

[12] Treccani L, Klein T Y, Meder F, et al.: Acta Biomaterialia, 9 (2013), 7, 7115-7150.

Google Scholar

[13] Stroeve P and Ileri N: Trends in Biotechnology, 29 (2011), 6, 259-266.

Google Scholar

[14] Schneider J J, Engstler J, Budna K P, et al.: European Journal of Inorganic Chemistry, 2005 (2005), 12, 2352-2359.

Google Scholar

[15] Santos A, Kumeria T and Losic D: Materials, 7 (2014), 4297-4320.

Google Scholar

[16] Kant K, Yu J X, Priest C, et al.: Analyst, 139 (2014), 5, 1134-1140.

Google Scholar

[17] de la Escosura-Muniz A, Chunglok W, Surareungchai W, et al.: Biosensors & Bioelectronics, 40 (2013), 1, 24-31.

DOI: 10.1016/j.bios.2012.05.021

Google Scholar

[18] Lin K C, Kunduru V, Bothara M, et al.: Biosensors & Bioelectronics, 25 (2010), 10, 2336-2342.

Google Scholar

[19] Deng J J and Toh C S: Sensors, 13 (2013), 6, 7774-7785.

Google Scholar

[20] Kant K, Priest C, Shapter J G, et al.: Electrochimica Acta, 139 (2014), 225-231.

Google Scholar

[21] Cheow P-S, Zhi E, Ting C, et al.: Electrochimica Acta, 53 (2008), 14, 4669-4673.

Google Scholar

[22] Osmanbeyoglu H U, Hur T B and Kim H K: Journal of Membrane Science, 343 (2009), 1-2, 1-6.

Google Scholar

[23] Boss C, Meurville E, Sallese J M, et al.: Journal of Membrane Science, 401 (2012), 217-221.

Google Scholar

[24] Zaraska L, Kurowska E, Sulka G D, et al.: Journal of Solid State Electrochemistry, 16 (2012), 11, 3611-3619.

DOI: 10.1007/s10008-012-1795-3

Google Scholar

[25] Tripathy J and Wiley J B: Journal of Solid State Electrochemistry, 19 (2015), 5, 1447-1452.

Google Scholar

[26] Tian M L, Xu S Y, Wang J G, et al.: Nano Letters, 5 (2005), 4, 697-703.

Google Scholar