Hydroxyapatite-Poly(Vinyl Alcohol)-Sodium Alginate Porous Hydrogels with Poly(Vinyl Alcohol) Surface Layer Used for Articular Cartilage Repair

Article Preview

Abstract:

The double-layered PVA/nanohydroxyapatite (nHA)-poly (vinyl alcohol)(PVA)-sodium alginate (SA) porous composite scaffolds used as synthetic articular cartilage were prepared by the freeze-thawing method, gas foaming method and crosslink method of Ca2+ ion, i.e., upper PVA layer for the cartilage substitute and underlying SA30 porous hydrogels for bone bonding. The microstructure and morphology of composite hydrogels were characterized using scanning electronic microscopy (SEM).It had high porosity and uniform pores. The content of HA in SA30 matrix were tested by Energy-dispersive X-ray spectroscopy (EDS). The biological properties of the composite hydrogels had been evaluated by co-culture and MTT. All results indicate that the PVA/SA30 hydrogels has good potential for repairing or replacing articular cartilage.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1155-1161

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.P. Yuan, Y.B. Li, JD de Bruijn, K. de Groot and X.D. Zhang: Biomaterials, Vol. 12 (2000), p.1283.

Google Scholar

[2] R. Detsch, H. Mayr and G. Ziegler: Acta Biomaterialia, Vol. 4 (2008), p.139.

Google Scholar

[3] E.S. Thian, K.A. Khor, N.H. Loh and S.B. Tor: Biomaterials, Vol. 22 (2001), p.1225.

Google Scholar

[4] M. Motskin, D.M. Wright, K. Muller, N. Kyle, T.G. Gard, A.E. Porter and et al: Biomaterials, Vol. 30 (2009) No. 19, p.3307.

DOI: 10.1016/j.biomaterials.2009.02.044

Google Scholar

[5] Mark E. Freeman, Michael J. Furey, Brian J. Love and Jeanne M. Hamp: Wear, Vol. 241 (2000), p.129.

Google Scholar

[6] Hatice Bodugoz-Senturk, Celia E. Macias, Jean H. Kung and Orhun K. Muratoglu: Biomaterials, Vol. 30 (2009), p.589.

DOI: 10.1016/j.biomaterials.2008.10.010

Google Scholar

[7] Damia Mawad, Ross Odell and Laura A. Poole-Warren: International Journal of Pharmaceutics, Vol. 366 (2009), p.31.

Google Scholar

[8] K.M. Liu, Y.B. Li,F.L. Xu, Y. Zuo, L. Zhang, H.N. Wang and et al: Materials Science and Engineering C, Vol. 29 (2009), p.261.

Google Scholar

[9] Y.S. Pan, D.S. Xiong and R.Y. Ma: Wear, Vol. 262 (2007), p.1021.

Google Scholar

[10] R.Y. Ma, D.S. Xiong, F. Miao, J.F. Zhang and Y. Peng: Materials Science and Engineering C, Vol. 29 (2009), p. (1979).

Google Scholar

[11] Jong Oh Kim, Jung Kil Park, Jeong Hoon Kim, Sung Giu Jin, Chul Soon Yong, Dong Xun Li and et al: International Journal of Pharmaceutics, Vol. 359 (2008), p.79.

Google Scholar

[12] L. Wang, R.M. Shelton, P.R. Cooper, M. Lawson, J.T. Triffitt and J.E. Barralet: Biomaterials, Vol. 24 (2003), p.3475.

DOI: 10.1016/s0142-9612(03)00167-4

Google Scholar

[13] Simmons CA, Alsberg E, Hsiong S, Kim WJ and Mooney DJ: Bone, Vol. 35 (2004), p.562.

Google Scholar

[14] W.H. Yang, L. Zhang, L. Wu, J.F. Li, J. Wang, H. Jiang and et al: Carbohydrate Polymers, Vol. 77 (2009), p.331.

Google Scholar

[15] Y.B. Li, de Wijn J, Klein CPAT, Meer Svd and de Groot K: Journal of Materials Science: Materials in Medicine, Vol. 5 (1994), p.252.

Google Scholar

[16] Rosa Ricciardi, Finizia Auriemma, Claudio De Rosa and Francü oise Laupretre: Macromolecules, Vol. 37 (2004), p. (1921).

Google Scholar

[17] F.L. Xu, Y.B. Li and X.J. Wang: Journal of Materials Science, Vol. 39 (2004), p.5669.

Google Scholar

[18] Y.N. Dai, P. Li, J.P. Zhang, A.Q. Wang and Q. Wei: J Biomed Mater Res B, Vol. 86B (2008), p.493.

Google Scholar

[19] X.Z. Zhang, D.Q. Wu and C.C. Chu: J Polym Sci Part B: Polym Phys, Vol. 41 (2003), p.582.

Google Scholar

[20] C.M. Gao, M.Z. Liu, J. Chen and X. Zhan: Polymer Degradation and Stability, Vol. 9 (2009), p.1405.

Google Scholar

[21] H.L. Wang, Y. Zuo, L. Zhang, W.H. Yang, Q. Zou, S. Zhou and et al: Materials Research Innovations, Vol. 14 (2010) No. 5, p.375.

Google Scholar