Fabrication of Ultra-Low Density, High Surface Area Carbon Aerogels and their Application in Supercapacitors

Article Preview

Abstract:

The ultra-low density carbon aerogel, as low as 20 mg/cm3, was fabricated by pyrolysis of the organic aerogel formed by aqueous condensation of resorcinol and formaldehyde. Its surface area was as high as 1783 m2/g and it was used for investigation of electrochemical capacitive behaviours. The ultra-low density carbon aerogel displayed capacitive performance (110 F/g at 0.2 A/g) in 6 M KOH aqueous solution. Additionally, over 98% of the initial capacitance was retained after repeating the cyclic voltammetry test for 1000 cycles. The electrochemical performance might be attributed to the combination of three dimensional “opened” structure and high surface area of the carbon aerogel.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1349-1355

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Zhu, J. He, ACS Appl. Mater. Interfaces Vol. 4 (2012), p.1770.

Google Scholar

[2] Y. Chen, X. Zhang, D. Zhang, P. Yu, Y. Ma, Carbon Vol. 49 (2011), p.573.

Google Scholar

[3] S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, ACS Nano Vol. 4 (2010), p.2822.

Google Scholar

[4] J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei, Carbon Vol. 48 (2010), p.3825.

Google Scholar

[5] R. W. Pekala, J. Mater. Sci. Vol. 24 (1989), p.3221.

Google Scholar

[6] J. Biener, M. Stadermann, M. Suss, M. A. Worsley, M. M. Biener, K. A. Rose, T. F. Baumann, Energy & Environmental Sci. Vol. 4 (2011), p.656.

DOI: 10.1039/c0ee00627k

Google Scholar

[7] Y. J. Lee, J. Lee, G. -P. Kim, E. J. Lee, J. Yi, I. K. Song, J. Nanoscience and Nanotechnology Vol. 14 (2014), p.8602.

Google Scholar

[8] Y. Zhao, C. Hu, Y. Hu, H. Cheng, G. Shi, L. Qu, Angew. Chem. Int. Ed. Vol. 124 (2012), p.11533.

Google Scholar

[9] F. Meng, X. Zhang, B. Xu, S. Yue, H. Guo, Y. Luo, J. Mater. Chem. Vol. 21 (2011), p.18537.

Google Scholar

[10] X. Song, L. Lin, M. Rong, Y. Wang, Z. Xie, X. Chen, Carbon Vol. 80 (2014), p.174.

Google Scholar

[11] S. A. Al-Muhtaseb, J. A. Ritter, Adv. Mater. Vol. 15 (2003), p.101.

Google Scholar

[12] J. Zhu, J. He, Nanoscale Vol. 4 (2012), p.3558.

Google Scholar

[13] J. Zhu, L. Xu, J. He, Chem. Eur. J Vol. 18 (2012), p.16393.

Google Scholar

[14] Y. Qian, I. M. Ismail, A. Stein, Carbon Vol. 68 (2014), p.221.

Google Scholar

[15] J. Biener, S. Dasgupta, L. Shao, D. Wang, M. A. Worsley, A. Wittstock, J. R. I. Lee, M. M. Biener, C. A. Orme, S. O. Kucheyev, B. C. Wood, T. M. Willey, A. V. Hamza, J. Weissmüller, H. Hahn, T. F. Baumann, Adv. Mater. Vol. 24 (2012), p.5083.

DOI: 10.1002/adma.201202289

Google Scholar

[16] K. Mukawa, N. Oyama, H. Ando, T. Sugiyama, S. Ogo, Y. Sekine, Carbon Vol. 88 (2015), p.33.

Google Scholar

[17] Y. Cao, J. Zhu, J. Xu, J. He, Carbon Vol. 77 (2014), p.1111.

Google Scholar

[18] K. Guo, Z. Hu, H. Song, X. Du, L. Zhong, X. Chen, RSC Adv. Vol. 5 (2015), p.5197.

Google Scholar

[19] J. Ni, W. Lu, L. Zhang, B. Yue, X. Shang, Y. Lv, J. Phys. Chem. C Vol. 113 (2008), p.54.

Google Scholar

[20] K. R. Prasad, N. Miura, J. Power Sources Vol. 135 (2004), p.354.

Google Scholar

[21] D. Zhang, X. Zhang, Y. Chen, P. Yu, C. Wang, Y. Ma, J. Power Sources Vol. 196 (2011), p.5990.

Google Scholar

[22] X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Science Vol. 341 (2013), p.534.

Google Scholar

[23] Q. Zheng, Z. Cai, Z. Ma, S. Gong, ACS Appl. Mater. Interfaces Vol. 7 (2015), p.3263.

Google Scholar