Corrosion Resistance of Mg-4Zn Alloy with Amorphous Micro-Arc Oxidation Coating in Simulated Body Fluid

Article Preview

Abstract:

A binary Mg-4Zn alloy was fabricated as a potential degradable biomaterial. To improve the corrosion resistance of Mg-4Zn alloy, an amorphous micro-arc oxidation (MAO) coating was prepared on the Mg-4Zn substrate. Electrochemical measurements and immersion tests were employed to evaluate the corrosion resistance of the specimen in simulated body fluid (SBF). Electrochemical measurements show that the Mg-4Zn alloy covered with a MAO coating has a much lower corrosion current density and a much greater polarization resistance. Immersion tests suggest that the degradation of Mg-4Zn substrate is relatively serious during the initial 8 h of immersion although it has been protected by a MAO coating. When most micro-pores within the MAO coating have been filled with precipitates resulted from the corrosion of the metal substrate, the degradation of the Mg-4Zn substrate is significantly delayed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1325-1333

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.L. Zhang and L. Yang: Materials Science and Engineering A, Vol. 497 (2008) No. 1-2, p.111.

Google Scholar

[2] Y.L. Zhou, M. Niinomi, T. Akahori, H. Fukui and H. Toda: Materials Science and Engineering A, Vol. 398 (2005) No. 1-2, p.28.

Google Scholar

[3] P. Shi, W.F. Ng, M.H. Wong and F.T. Cheng: Journal of Alloys and Compounds, Vol. 469 (2009) No. 1-2, p.286.

Google Scholar

[4] Y.W. Song, D.Y. Shan and E.H. Han: Materials Letters, Vol. 62 (2008) No. 17-18, p.3276.

Google Scholar

[5] Y.L. Zhou, M. Niinomi and T. Akahori: Materials Science and Engineering A, Vol. 371 (2004) No. 1-2, p.283.

Google Scholar

[6] M.P. Staiger, A.M. Pietak, J. Huadmai and G. Dias: Biomaterials, Vol. 27 (2006) No. 9, p.1728.

Google Scholar

[7] S.X. Zhang, J.A. Li, Y. Song, C.L. Zhao, X,N. Zhang, C.Y. Xie, Y. Zhang, H.R. Tao, Y.H. He, Y. Jiang and Y.J. Bian: Materials Science and Engineering C, Vol. 29 (2009) No. 6, p. (1907).

Google Scholar

[8] J. Vormann: Molecular Aspects of Medicine, Vol. 24 (2003) No. 1-3, p.27.

Google Scholar

[9] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth and H. Windhagen: Biomaterials, Vol. 26 (2005) No. 17, p.3557.

DOI: 10.1016/j.biomaterials.2004.09.049

Google Scholar

[10] F. Witte, J. Fischer, J. Nellesen, H.A. Crostack, V. Kaese, A. Pisch, F. Beckmann and H. Windhagen: Biomaterials, Vol. 27 (2006) No. 7, p.1013.

DOI: 10.1016/j.biomaterials.2005.07.037

Google Scholar

[11] G.L. Song: Corrosion Science, Vol. 49 (2007) No. 4, p.1696.

Google Scholar

[12] J. Liang, P. Bala Srinivasan, C. Blawert and W. Dietzel: Corrosion Science, Vol. 51 (2009) No. 10, p.2483.

Google Scholar

[13] J.C. Gao, S. Wu, L.Y. Qiao and Y. Wang: Transactions of Nonferrous Metals Society of China, Vol. 18 (2008) No. 3, p.588.

Google Scholar

[14] G. Song, A. Atrens, D. St John, J. Nairn and Y. Li: Corrosion Science, Vol. 39 (1997) No. 5, p.855.

Google Scholar

[15] G. Song, A. Atrens, D. St John, X. Wu and J. Nairn: Corrosion Science, Vol. 39 (1997) No. 10-11, p. (1981).

Google Scholar

[16] G.Y. Liu, J. Hu, Z.K. Ding and C. Wang: Applied Surface Science, Vol. 257 (2011) No. 6, p. (2051).

Google Scholar

[17] D.S. Yin, E.L. Zhang and S.Y. Zeng: Transactions of Nonferrous Metals Society of China, Vol. 18 (2008) No. 4, p.763.

Google Scholar

[18] L.P. Xu, F. Pan, G.N. Yu, L. Yang, E.L. Zhang and K. Yang: Biomaterials, Vol. 30 (2009) No. 8, p.1512.

Google Scholar

[19] S.X. Zhang, X.N. Zhang, C.L. Zhao, J.N. Li, Y. Song, C.Y. Xie, H.R. Tao, Y. Zhang, Y.H. He, Y. Jiang and Y.J. Bian: Acta Biomaterialia, Vol. 6 (2010) No. 2, p.626.

DOI: 10.1016/j.actbio.2009.06.028

Google Scholar

[20] T. Kokubo, H. Takadama: Biomaterials, Vol. 27 (2006) No. 15, p.2907.

Google Scholar

[21] J.G. Qian, C. Wang, D. Li, B.L. Guo and G.L. Song: Transactions of Nonferrous Metals Society of China, Vol. 18 (2008) No. 1, p.19.

Google Scholar

[22] W. Shang, B.Z. Chen, X.C. Shi, Y. Chen and X. Xiao: Journal of Alloys and Compounds, Vol. 474 (2009) No. 1-2, p.541.

Google Scholar

[23] H.P. Duan, K.Q. Du, C.W. Yan and F.H. Wang: Electrochimica Acta, Vol. 51 (2006) No. 14, p.2898.

Google Scholar

[24] F. Chen, H. Zhou, B. Yao, Z. Qin and Q.F. Zhang: Surface & coatings technology, Vol. 201 (2007) No. 9-11, p.4905.

Google Scholar

[25] W.P. Li, L.Q. Zhu, Y.H. Li and B. Zhao: Journal of University of Science and Technology Beijing, Vol. 13 (2006) No. 5, p.450.

Google Scholar

[26] Y.L. Cheng, H.L. Wu, Z.H. Chen, H.M. Wang, Z. Zhang and Y.W. Wu: Transactions of Nonferrous Metals Society of China, Vol. 17 (2007) No. 3, p.502.

Google Scholar

[27] X.N. Gu, N. Li, W.R. Zhou, Y.F. Zheng, X. Zhao, Q.Z. Cai and L.Q. Ruan: Acta Biomaterialia, Vol. 7 (2011) No. 4, p.1880.

Google Scholar

[28] A. Bai and Z.J. Chen: Surface & coatings technology, Vol. 203 (2009) No. 14, p. (1956).

Google Scholar

[29] Z.J. Li, X.N. Gu, S.Q. Lou and Y.F. Zheng: Biomaterials, Vol. 29 (2008) No. 10, p.1329.

Google Scholar

[30] D. Vojtěch, J. Kubásek, J. Šerák, P. Novák: Acta Biomaterialia, Vol. 7 (2011) No. 9, p.3515.

DOI: 10.1016/j.actbio.2011.05.008

Google Scholar

[31] J.W. Chang, X.W. Guo, P.H. Fu, L.M. Peng and W.J. Ding: Electrochimica Acta, Vol. 52 (2007) No. 9, p.3160.

Google Scholar