Protein Release and Biological Evaluation of Bio-Inspired Chitosan-Based Nano-Gels

Article Preview

Abstract:

Bio-inspired nanogels were prepared by ionically crosslinking sodium tripolyphosphate (TPP) and biomimetic phosphorylcholine-chitosan derivative (PCCs) which was synthesized from chitosan and cell membrane-mimicking phosphorylcholine. The physcochemical properties of PCCs/TPP nanogels were investigated by dynamic laser scattering and transmission electron microscopy, as well as their hemocompatibility were tested. Bovine serum albumin was used as a model protein to study protein adsorption, loading and releasing property of these nanogels in vitro. The results indicated that biomimetic PCCs/TPP nanogels can not only restrain the non-specific protein adsorption, improve the hemocompatibility, but also have good loading and releasing protein efficacy, which will be a promising nanocarrier for protein drug delivery.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1313-1318

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Drotleff,U. Lungwitz, M. Breunig, A. Dennis, T. Blunk, J. Tessmar, A. Göpferich, Biomimetic polymers in pharmaceutical and biomedical sciences, Eur. J. Pharm. Biopharm. 58 (2000) 385-407.

DOI: 10.1016/j.ejpb.2004.03.018

Google Scholar

[2] S.C. Balmert, S.R. Little, Biomimetic Delivery with Micro- and Nanoparticles, Adv. Mater. 24 (2012) 3757-3778.

DOI: 10.1002/adma.201200224

Google Scholar

[3] R. Matsuno, K. Ishihara, Integrated functional nanocolloids covered with artificial cell membranes for biomedical applications, Nano Today 6 (2011) 61-74.

DOI: 10.1016/j.nantod.2010.12.009

Google Scholar

[4] S. Son, G. Kim, K. Singha, S. Park, M. Ree, W.J. Kim, Artificial Cell Membrane-Mimicking Nanostructure Facilitates Efficient Gene Delivery through Fusogenic Interaction with the Plasma Membrane of Living Cells, Small 7 (2011) 2991-2997.

DOI: 10.1002/smll.201100232

Google Scholar

[5] J.P. Salvage, S.F. Rose, G.J. Phillips, G.W. Hanlon, A.W. Lloyd, I.Y. Ma, S.P. Armes, N.C. Billingham, A.L. Lewis, Novel biocompatible phosphorylcholine-based self-assembled nanoparticles for drug deliveryNovel biocompatible phosphorylcholine-based self-assembled nanoparticles for drug delivery, J. Control. Release 104 (2005).

DOI: 10.1016/j.jconrel.2005.02.003

Google Scholar

[6] M.N.V. Ravi Kumar, R.A.A. Muzzarelli, C. Muzzarelli, H. Sashiwa, A.J. Domb, Chitosan Chemistry and Pharmaceutical Perspectives, Chem. Rev. 104 (2004) 6017-6084.

DOI: 10.1021/cr030441b

Google Scholar

[7] M. Amidi, E. Mastrobattista, W. Jiskoot, W.E. Hennink, Chitosan-based delivery systems for protein therapeutics and antigens, Adv. Drug. Deliv. Rev. 62 (2010) 59-82.

DOI: 10.1016/j.addr.2009.11.009

Google Scholar

[8] Z.H. Wang, R. Zeng, M. Tu, J.H. Zhao, Synthesis and Characterization of Biomimetic Choline-Chitosan Derivatives with a Phosphoramide Linkage, Polym. Mater. Sci. Eng. 28 (2012) 20-23.

Google Scholar

[9] Z.H. Wang, R. Zeng, M. Tu, J.H. Zhao, A novel biomimetic chitosan-based nanocarrier with suppression of the protein-nanocarrier interactions, Mater. Lett. 77 (2012)38-40.

DOI: 10.1016/j.matlet.2012.02.126

Google Scholar

[10] T. Konno, K. Kurita, Y. Iwasaki, N. Nakabayashi, K. Ishihara, Preparation of nanoparticles composed with bioinspired 2-methacryloyloxyethyl phosphorylcholine polymer, Bioamaterials 22 (2001) 1883-1889.

DOI: 10.1016/s0142-9612(00)00373-2

Google Scholar

[11] Y. Oda, S. Kanaoka, T. Sato,  S. Aoshima, K. Kuroda, Block versus Random Amphiphilic Copolymers as Antibacterial Agents, Biomacromolecules 12 (2011) 3581-3591.

DOI: 10.1021/bm200780r

Google Scholar

[12] X.Z. Shu, K.J. Zhu, A novel approach to prepare tripolyphosphate/chitosan complex beads for controlled release drug delivery, Int. J. Pharmaceut. 201 (2000) 51-58.

DOI: 10.1016/s0378-5173(00)00403-8

Google Scholar

[13] Q. Gan, T. Wang, Chitosan nanoparticle as protein delivery carrier—Systematic examination of fabrication conditions for efficient loading and release, Colloids Surf. B: Biointerface 59 (2007) 24-34.

DOI: 10.1016/j.colsurfb.2007.04.009

Google Scholar

[14] H. Chen, L. Yuan, W. Song, Z.K. Wu, D. Li, Biocompatible polymer materials: Role of protein–surface interactions, Prog. Polym. Sci. 33 (2008) 1059-1087.

DOI: 10.1016/j.progpolymsci.2008.07.006

Google Scholar

[15] ASTM F 756-00, Standard practice for assessment of hemolytic properties of materials. Philadelphia, PA: ASTM, 2008, 1-5.

Google Scholar

[16] S. Salmaso, P. Caliceti, Self assembling nanocomposites for protein delivery: Supramolecular interactions of soluble polymers with protein drugs, Int. J. Pharmaceut. 440 (2013) 111-123.

DOI: 10.1016/j.ijpharm.2011.12.029

Google Scholar