[1]
Gorodetskyi O, Speetjens M F M, Anderson P D. Simulation and eigenmode analysis of advective–diffusive transport in micromixers by the diffusive mapping method[J]. Chemical Engineering Science, 2014, 107: 30-46.
DOI: 10.1016/j.ces.2013.11.045
Google Scholar
[2]
Yang A S, Chuang F C, Chen C K, et al. A high-performance micromixer using three-dimensional Tesla structures for bio-applications[J]. Chemical Engineering Journal, 2015, 263: 444-451.
DOI: 10.1016/j.cej.2014.11.034
Google Scholar
[3]
Feng X, Ren Y, Jiang H. Effect of the crossing-structure sequence on mixing performance within three-dimensional micromixers[J]. Biomicrofluidics, 2014, 8(3): 034106.
DOI: 10.1063/1.4881275
Google Scholar
[4]
Tran-Minh N, Karlsen F, Dong T. A Simple and Low Cost Micromixer for Laminar Blood Mixing: Design, Optimization, and Analysis[M]/Biomedical Informatics and Technology. Springer Berlin Heidelberg, 2014: 91-104.
DOI: 10.1007/978-3-642-54121-6_8
Google Scholar
[5]
Bensaid S, Deorsola F A, Marchisio D L, et al. Flow field simulation and mixing efficiency assessment of the multi-inlet vortex mixer for molybdenum sulfide nanoparticle precipitation[J]. Chemical Engineering Journal, 2014, 238: 66-77.
DOI: 10.1016/j.cej.2013.09.065
Google Scholar
[6]
Shamsoddini R, Sefid M, Fatehi R. Lagrangian simulation and analysis of the micromixing phenomena in a cylindrical paddle mixer using a modified weakly compressible smoothed particle hydrodynamics method[J]. Asia-Pacific Journal of Chemical Engineering, 2014, DOI: 10. 1002/apj. 1853.
DOI: 10.1002/apj.1853
Google Scholar
[7]
Le The H, Le Thanh H, Dong T, et al. An effective passive micromixer with shifted trapezoidal blades using wide Reynolds number range[J]. Chemical Engineering Research and Design, 2015, 93: 1-11.
DOI: 10.1016/j.cherd.2014.12.003
Google Scholar
[8]
Alam A, Afzal A, Kim K Y. Mixing performance of a planar micromixer with circular obstructions in a curved microchannel[J]. Chemical Engineering Research and Design, 2014, 92(3): 423-434.
DOI: 10.1016/j.cherd.2013.09.008
Google Scholar
[9]
Matsunaga T, Nishino K. Swirl-inducing inlet for passive micromixers[J]. RSC Advances, 2014, 4(2): 824-829.
DOI: 10.1039/c3ra44438d
Google Scholar
[10]
Kuo J N, Jiang L R. Design optimization of micromixer with square-wave microchannel on compact disk microfluidic platform[J]. Microsystem Technologies, 2014, 20(1): 91-99.
DOI: 10.1007/s00542-013-1769-0
Google Scholar
[11]
Jung J H, Kim G Y, Seo T S. An integrated passive micromixer–magnetic separation–capillary electrophoresis microdevice for rapid and multiplex pathogen detection at the single-cell level[J]. Lab on a Chip, 2011, 11(20): 3465-3470.
DOI: 10.1039/c1lc20350a
Google Scholar
[12]
Pendharkar G, Deshmukh R, Patrikar R. Investigation of surface roughness effects on fluid flow in passive micromixer[J]. Microsystem Technologies, 2013: 1-9.
DOI: 10.1007/s00542-013-1957-y
Google Scholar
[13]
Papadopoulos V, Kefala I, Kaprou G, et al. A passive micromixer for enzymatic digestion of DNA[J]. Microelectronic Engineering, (2014).
DOI: 10.1016/j.mee.2014.04.011
Google Scholar
[14]
Liu Y, Deng Y, Zhang P, et al. Experimental investigation of passive micromixers conceptual design using the layout optimization method[J]. Journal of Micromechanics and Microengineering, 2013, 23(7): 075002.
DOI: 10.1088/0960-1317/23/7/075002
Google Scholar
[15]
Erickson D, Li D. Influence of surface heterogeneity on electrokinetically driven microfluidic mixing[J]. Langmuir, 2002, 18(5): 1883-1892.
DOI: 10.1021/la015646z
Google Scholar