[1]
Chung K T, Sabo A, Pica A P. Electrical permittivity and conductivity of carbon black-polyvinyl chloride composites Journal of Applied Physics, 1982, 53(10): 6867-6879.
DOI: 10.1063/1.330027
Google Scholar
[2]
Lundberg B, Sundqvist B. Resistivity of a composite conducting polymer as a function of temperature, pressure, and environment: applications as a pressure and gas concentration transducer. Journal of Applied Physics, 1986, 60(3): 1074-1079.
DOI: 10.1063/1.337401
Google Scholar
[3]
Moffatt D M, Runt J P, Halliyal A, et al. Metal oxide-polymer thermistors. Journal of materials science, 1989, 24(2): 609-614.
DOI: 10.1007/bf01107449
Google Scholar
[4]
Sumita M, Sakata K, Hayakawa Y, et al. Double percolation effect on the electrical conductivity of conductive particles filled polymer blends. Colloid and Polymer Science, 1992, 270(2): 134-139.
DOI: 10.1007/bf00652179
Google Scholar
[5]
Carmona F, Canet R, Delhaes P. Piezoresistivity of heterogeneous solids. Journal of Applied Physics, 1987, 61(7): 2550-2557.
DOI: 10.1063/1.337932
Google Scholar
[6]
Wu S, Mo L, Shui Z, et al. Investigation of the conductivity of asphalt concrete containing conductive fillers. Carbon, 2005, 43(7): 1358-1363.
DOI: 10.1016/j.carbon.2004.12.033
Google Scholar
[7]
Wu S P, Mo L T, Shui Z H. Preparation of electrically conductive asphalt concrete. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2002, 26(5): 566-569.
Google Scholar
[8]
Liu X, Wu S, Li N, et al. Self-monitoring application of asphalt concrete containing graphite and carbon fibers. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2008, 23(2): 268-271.
DOI: 10.1007/s11595-006-2268-2
Google Scholar
[9]
Tang N, Sun C J, Huang S X, et al. Damage and corrosion of conductive asphalt concrete subjected to freeze-thaw cycles and salt. Materials Research Innovations, 2013, 17(Supplement1): 240-245.
DOI: 10.1179/1432891713z.000000000223
Google Scholar
[10]
Liu X, Wu S, Ye Q, et al. Properties evaluation of asphalt-based composites with graphite and mine powders. Construction and Building Materials, 2008, 22(3): 121-126.
DOI: 10.1016/j.conbuildmat.2006.10.004
Google Scholar
[11]
Liu X, Wu S. Research on the conductive asphalt concrete's piezoresistivity effect and its mechanism. Construction and Building Materials, 2009, 23(8): 2752-2756.
DOI: 10.1016/j.conbuildmat.2009.03.006
Google Scholar
[12]
Liu X, Wu S. Study on the graphite and carbon fiber modified asphalt concrete. Construction and Building Materials, 2011, 25(4): 1807-1811.
DOI: 10.1016/j.conbuildmat.2010.11.082
Google Scholar
[13]
Simmons J G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. Journal of Applied Physics, 1963, 34(6): 1793-1803.
DOI: 10.1063/1.1702682
Google Scholar
[14]
Ruschau G R, Yoshikawa S, Newnham R E. Resistivities of conductive composites. Journal of applied physics, 1992, 72(3): 953-959.
DOI: 10.1063/1.352350
Google Scholar
[15]
Aviram A, Ratner M A. Molecular rectifiers. Chemical Physics Letters, 1974, 29(2): 277-283.
DOI: 10.1016/0009-2614(74)85031-1
Google Scholar
[16]
Simmons J G. Low-Voltage Current-Voltage Relationship of Tunnel Junctions. Journal of Applied Physics, 1963, 34(1): 238-239.
DOI: 10.1063/1.1729081
Google Scholar
[17]
Simmons J G. Generalized Thermal J-V Characteristic for the Electric Tunnel Effect. Journal of Applied Physics, 1964, 35(9): 2655-2658.
DOI: 10.1063/1.1713820
Google Scholar
[18]
Sandler J K W, Kirk J E, Kinloch I A, et al. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer, 2003, 44(19): 5893-5899.
DOI: 10.1016/s0032-3861(03)00539-1
Google Scholar