Theoretical Study on the Electronic Structures, Magnetic Properties and Corrosion-Resistant Ability of NinAl (n=1-8, 12) Clusters

Article Preview

Abstract:

The growth behavior, electronic structures and magnetic properties for NinAl (1-8,12) clusters were investigated detailedly using the selected density functional method (BPW91/LanL2DZ). The change of binding energies show that bimetallic clusters are more stable based on the computed bond energy of Al-Ni, which is bigger than that of Ni-Ni. The strong peaks of Ni5Al in run chart of binding energies, HOMO–LUMO gap, fragmentation energy, the second-order energy and the ionization potential indicate that the stability of bimetallic cluster is optimal when the doping of aluminum is 16.7 atomic percent. At the same time, the hardness analysis of bimetallic clusters shows that Ni5Al cluster has excellent corrosion resistance ability. In addition, the magnetic moment of NinAl (n=1-8,12) clusters decrease obviously comparing with pure nickel clusters because of the s-p-d hybridization between aluminum atom and nickel atom.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-64

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Florez, F. Mondragón, P. Fuentealba, J. Phys. Chem. B 110(2006) 13793-13798.

Google Scholar

[2] J. H. Sinfelt, Acc. Chem. Res. 10(1977)15-20.

Google Scholar

[3] J. H. Sinfelt, Acc. Chem. Res. 20(1987)134-139.

Google Scholar

[4] D. Bazin, C. Mottet, G. Treglia, Appl. Catal. A: General. 200(2000)47-54.

Google Scholar

[5] S.J. Yuan, A.M.F. Choong, S.O. Pehkonen, Corros. Sci. 49(2007)4352-4358.

Google Scholar

[6] S. Sohn, T. Kang, J. Alloy. Compd. 335(2002)281-289.

Google Scholar

[7] L.J.P. Drolenga, F.P. IJsseling, B.H. KoIster, Mater Corros. 34(1983)167-178.

Google Scholar

[8] A. Chikhaoui, K. Haddab, S. Bouarab, A. Vega, J. Phys. Chem. A 115(2011)13997-14005.

Google Scholar

[9] M. Harb, F. Rabilloud, D. Simon, J. Chem. Phys. 13 (2009)174302-1-174302-8.

Google Scholar

[10] N. S. Venkataramanan, R. Sahara, H. Mizuseki, Y. Kawazoe, J. Phys. Chem. A 114(2010)5049-5057.

Google Scholar

[11] V. Shewale, M. Deshpande, Comp. Theo. Chem. 984(2012)128-136.

Google Scholar

[12] C.H. Gao, X.R. Zhang, Ms.D. thesis, Jiangsu University of Science and Technology (2009).

Google Scholar

[13] P. Hohenberg, W. Kohn, Phys. Rev. B 136(1964) 864-871.

Google Scholar

[14] W. Kohn, L. Sham, Phys. Rev. 140 (1965)A1133-1138.

Google Scholar

[15] A.D. Becke, J. Chem. Phys. 112(2000)4020-4026.

Google Scholar

[16] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant; GAUSSIAN 03, Revision A. 1, Gaussian Inc., Pittsburgh, PA(2003).

Google Scholar

[17] J. C. Pinegar, J. D. Langenberg, C. A. Arrington, E. M. Spain, M. D. Morse, J. Chem. Phys. 102(1995)666-674.

Google Scholar

[18] K. P. Huber, G. Herzberg, Vol. 4, Van Nostrand Rienhold, New York (1979).

Google Scholar

[19] J. Q. Wen, Z.Y. Jiang, Y. Q. Hou, J.Q. Li, S.Y. Chu, J Mol Struc-Theochem. 949 (2010)91-95.

Google Scholar

[20] F.Y. Hao, Y.F. Zhao, Y.Y. Li, F. L. Liu, J. Mol. Struct. 807(2007)153-158.

Google Scholar

[21] Q.L. Lu, Q.Q. Luo, L.L. Chen, Eur. Phys. J. D61(2011)389-396.

Google Scholar

[22] T. Nakazawa, T. Igarashi, T. Tsuru, Y. Kaji; Comp. Mater. Sci. 46(2009)367-375.

Google Scholar

[23] F.A. Reuse, S.N. Khanna, Chem. Phys 234 (1995)77-87.

Google Scholar

[24] V. G. Grigoryan, M. Springborg, Phys. Rev. B, 70(2004) 205415-1-205415-5.

Google Scholar

[25] S.K. Nayak, S.N. Khanna, B.K. Rao, P. Jena, J. Phys. Chem. A 101(1997)1072-1080.

Google Scholar

[26] M.C. Michelini, R. P. Diez , A.H. Jubert, Int. J. Quant. Chem. 85 (2001)22-33.

Google Scholar

[27] S. Bouarab, A. Vega, M.J. Lόpez, M.P. Iniguez, J.A. Alonso, Phys. Rev. B55(1997)13279-13282.

Google Scholar

[28] T. Futschek, J. Hafner, M. Marsman, J. Phys. Condens. Matter 18(2006) 9703-9707.

Google Scholar

[29] E. K. Parks, L. Zhu, J. Ho, S. J. Riley, J. Chem. Phys. 100(1994)7206-7222.

Google Scholar

[30] S. E. Apsel, J. W. Emmert, J. Deng, L. A. Bloomfield, Phys. Rev. Lett. 76(1996)1441-1444.

DOI: 10.1103/physrevlett.76.1441

Google Scholar

[31] M. Wang, X.W. Huang, Z. l. Du, Y. C. Li, Chem. Phys. Lett. 480 (2009)258-264.

Google Scholar

[32] G. F. Zhao, Y. L. Wang, J. M. Sun, Y. X. Wang, Acta Phys. Chim. Sin. 28 (2012)1355-1360.

Google Scholar

[33] M. B. Knickelbein, S. H. Yang, S. J. Riley, J. Chem. Phys. 93(1990) 94-104.

Google Scholar

[34] M.A. Khan, R.L. Williams, D.F. Williams, Biomaterials20(1999)631-637.

Google Scholar

[35] T. Weber, L. de Wit, F.W. Saris, Mat. Sci. Eng. A 199(1995)205-210.

Google Scholar

[36] J.N. Balaraju, L. Kalavati, K.S. Rajam, Surf. Coat. Tech. 200(2006)3933-3941.

Google Scholar

[37] H.X. Dong, Y. H. He, Materials science and engineering of powder metallurgy 14(2009)83-88.

Google Scholar

[38] P Y Guo, C L Zeng, Y. Shao, Transactions of Materials and Heat Treatment, 2010, 31(11): 149-154.

Google Scholar