Thermo-Kinetic Modelling and Analysis of the Simultaneous Hot Stamping and Quenching of EN AW-6016-T4 Sheet

Article Preview

Abstract:

The aluminium alloy AW-6016-T4 sheet is the most widely used alloy for simple-shapeouter body parts for passenger vehicles at room temperature. However, for complex parts, such asthe B-pillar, the room temperature formability of AW-6016-T4 sheet is not sufficient. Simultaneoushot stamping and quenching is a viable alternative, but there is still limited information about theinfluence of process parameters on both the formability during the process and the part strength atthe end of the process. A combination of thermo-kinetic simulation and experiments were used toinvestigate the influence of process parameters in the simultaneous hot stamping and quenchingprocess.Increasing the heating rate from 1 to 100 K s-1 during heating to the solution heat treatment (SHT)temperature was found to have no significant influence on the UTS. However, a SHT time of 4 minis required to achieve highest strength by the end of the process chain. Increasing the amount ofdeformation and cooling rate after SHT have a positive influence on the finished part. PredictedDSC curves and Yield strength values from MatCalc were in good agreement with the experimentalresults.

You have full access to the following eBook

Info:

Periodical:

Pages:

133-139

Citation:

Online since:

May 2016

Authors:

Export:

Share:

Citation:

* - Corresponding Author

[1] R.P. Garrett, J. Lin, T.A. Dean, Solution Heat Treatment and Cold Die Quenching in Forming AA 6xxx Sheet Components : Feasibility Study, 8 (2005) 673–680. doi: 10. 4028/www. scientific. net/AMR. 6-8. 673.

DOI: 10.4028/www.scientific.net/amr.6-8.673

Google Scholar

[2] M. Kumar, N. Sotirov, C. Chimani, Characterization of High Strength Al-Zn-Mg Alloy Sheet for Hot Stamping, Mater. Sci. Forum. 794-796 (2014) 796–801. doi: 10. 4028/www. scientific. net/MSF. 794-796. 796.

DOI: 10.4028/www.scientific.net/msf.794-796.796

Google Scholar

[3] A. Falahati, E. Povoden-Karadeniz, P. Lang, P. Warczok, E. Kozeschnik, Thermo-kinetic computer simulation of differential scanning calorimetry curves of AlMgSi alloys, Int. J. Mater. Res. 101 (2010) 1089–1096. doi: 10. 3139/146. 110396.

DOI: 10.3139/146.110396

Google Scholar

[4] A. FALAHATI, J. WU, P. LANG, M.R. AHMADI, E. POVODEN-KARADENIZ, E. KOZESCHNIK, Assessment of parameters for precipitation simulation of heat treatable aluminum alloys using differential scanning calorimetry, Trans. Nonferrous Met. Soc. China. 24 (2014).

DOI: 10.1016/s1003-6326(14)63327-6

Google Scholar

[5] P. Lang, T. Wojcik, E. Povoden-Karadeniz, A. Falahati, E. Kozeschnik, Thermo-kinetic prediction of metastable and stable phase precipitation in Al-Zn-Mg series aluminium alloys during non-isothermal DSC analysis, J. Alloys Compd. 609 (2014).

DOI: 10.1016/j.jallcom.2014.04.119

Google Scholar

[6] P. Lang, E. Povoden-Karadeniz, A. Falahati, E. Kozeschnik, Simulation of the effect of composition on the precipitation in 6xxx Al alloys during continuous-heating DSC, J. Alloys Compd. 612 (2014) 443–449. doi: 10. 1016/j. jallcom. 2014. 05. 191.

DOI: 10.1016/j.jallcom.2014.05.191

Google Scholar

[7] J. Svoboda, F.D. Fischer, P. Fratzl, E. Kozeschnik, Modelling of kinetics in multi-component multi-phase systems with spherical precipitates I: Theory, Mater. Sci. Eng. A. 385 (2004) 166–174. doi: 10. 1016/j. msea. 2004. 06. 018.

DOI: 10.1016/j.msea.2004.06.018

Google Scholar

[8] E. Kozeschnik, J. Svoboda, F.D. Fischer, Modified evolution equations for the precipitation kinetics of complex phases in multi-component systems, Calphad Comput. Coupling Phase Diagrams Thermochem. 28 (2004).

DOI: 10.1016/j.calphad.2004.11.003

Google Scholar

[9] H.J. Rack, The influence of prior strain upon precipitation in a high-purity 6061 aluminum alloy, Mater. Sci. Eng. 29 (1977) 179–188. doi: 10. 1016/0025-5416(77)90125-2.

DOI: 10.1016/0025-5416(77)90125-2

Google Scholar

[10] P. Sherstnev, P. Lang, E. Kozeschnik, Treatment of Simultaneous Deformation and Solid- State Precipitation in Thermo-Kinetic Calculations, Eccomas 2012. (2012) 8.

Google Scholar

[11] U.F. Kocks, Laws for Work-Hardening and Low-Temperature Creep, J. Eng. Mater. Technol. 98 (1976) 76. doi: 10. 1115/1. 3443340.

Google Scholar

[12] H. Stüwe, Dynamische erholung bei der warmverformung, Acta Metall. 13 (1965) 1337–1342. doi: 10. 1016/0001-6160(65)90045-3.

DOI: 10.1016/0001-6160(65)90045-3

Google Scholar

[13] F.D. Fischer, J. Svoboda, F. Appel, E. Kozeschnik, Modeling of excess vacancy annihilation at different types of sinks, Acta Mater. 59 (2011) 3463–3472. doi: 10. 1016/j. actamat. 2011. 02. 020.

DOI: 10.1016/j.actamat.2011.02.020

Google Scholar

[14] P. Lang, A. Falahati, R. Radis, M.R. Ahmadi, P. Warczok, E. Kozeschnik, Modelling the Influence of Cooling Rate on the Precipitate Evolution in Al-Mg-Si (Cu) Alloys, in: Mater. Sci. Technol. (MS&T), 16. -20. 10. 2011, 2011: p.284–291.

Google Scholar

[15] M.R. Ahmadi, E. Povoden-Karadeniz, L. Whitmore, M. Stockinger, A. Falahati, E. Kozeschnik, Yield strength prediction in Ni-base alloy 718Plus based on thermo-kinetic precipitation simulation, Mater. Sci. Eng. A. 608 (2014).

DOI: 10.1016/j.msea.2014.04.054

Google Scholar

[16] Y. Birol, Pre-straining to improve the bake hardening response of a twin-roll cast Al-Mg-Si alloy, Scr. Mater. 52 (2005) 169–173. doi: 10. 1016/j. scriptamat. 2004. 10. 001.

DOI: 10.1016/j.scriptamat.2004.10.001

Google Scholar