A New Free-Machining Steel Containing Bismuth and Calcium

Article Preview

Abstract:

The paper presents a new environmentally friendly lead-free free-machining structural steel AVTs19KhGN containing bismuth and calcium. The following quality characteristics of the new steel (in as-cast and forged condition) are determined: mechanical properties; austenite grain size; amount of non-metallic inclusions; surface quality. In forged rods (square 20 mm) a tendency towards an increase of bismuth content is observed from bottom to top of the ingot. Calcium distribution along the billet is uniform. Surface quality of billets in heats following the test heats is comparable to that of analog steels. Austenite grain size does not exceed ASTM number 6. Austenite grain is refined with increasing bismuth content. Mechanical properties are at the same level as for the steel without bismuth and calcium.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

251-255

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.B. Alchagirov and A.G. Mozgovoi: High Temperature Vol. 41 (2003), pp.412-414.

Google Scholar

[2] M.J. Assael, A.E. Kalyva and K.D. Antoniadis: High Temperatures-High Pressures. Vol. 41 (2012), pp.161-184.

Google Scholar

[3] H.T. Liu and W.Q. Chen: Ironmaking and Steelmaking. Vol. 41 (2014), pp.19-25.

Google Scholar

[4] J. -L. Li, Z. Li, H. Chen, X. -P. Su, H. Tu and J. -H. Wang: Materials Science and Engineering of Powder Metallurgy Vol. 18 (2013), pp.741-747.

Google Scholar

[5] D. Wu and Z. Li: Iron and Steel (Peking) Vol. 48 (2011), pp.78-82.

Google Scholar

[6] K. Rhee, S. -B. Ahn and D. -L. Lee: South East Asia Iron and Steel Institute Vol. 39 (2010), pp.37-40.

Google Scholar

[7] F. Tsukihashi, A. Suzuki and N. Sano: Steel Res Vol. 2 (1996), p.35–38.

Google Scholar

[8] H. Liu and W. Chen: Steel Research International Vol. 83 (2012), pp.1172-1179.

Google Scholar

[9] B. Reh and U. Finger: Bull. Bismuth Inst. Vol. 55 (1988), pp.1-2.

Google Scholar

[10] G. -C. Jiang, K. L. Huang and Y. -Q. Zhuang: Bull. Bismuth Inst. Vol. 56 (1989), pp.7-9.

Google Scholar

[11] A. V. Ryabov, A. M. Panfilov and N. S. Semenova: Modern Applied Science Vol. 9 (2015), pp.252-259.

Google Scholar

[12] M. Toshiyuki, T. Kunikazu and S. Tetsuo: JFE Technical Report Vol. 15 (2010), pp.10-16.

Google Scholar

[13] A.V. Ryabov and I.V. Chumanov: Russ. Metall. Vol. 12 (2012), p.1065–1067.

Google Scholar

[14] Z. Li, D. Wu and W. Lv: Advanced Materials Research Vol. 512-515 (2012), p.1923-(1926).

Google Scholar

[15] D. Wu and Z. Li: Advanced Materials Research Vol. 430-432 (2012), pp.306-309.

Google Scholar

[16] S. Hosohara, Y. Miki, K. Senda and H. Nishi, Japan Patent 2002, 194, 419. (2002).

Google Scholar

[17] S. SO, Japan Patent 2000, 336, 454. (2000).

Google Scholar

[18] G. Anami, Y. Matsushima, M. Somekawa and M. Shikaiso, Japan Patent 2000, 248, 333. (2000).

Google Scholar

[19] W.S. Montgomery, W.J. Doran and R.J. Ross, U.S. Patent 5, 513, 689. (1996).

Google Scholar

[20] A.V. Ryabov, O. K. Tokovoi and I.V. Chumanov, RU. Patent 2, 561, 558. (2015).

Google Scholar