Synthesis and Characterization of Biomass Supported Ag, Co and Ag-Co Nanoparticles

Article Preview

Abstract:

Silica extracted from rice husk was used as a support to synthesize the monometallic Ag, Co and bimetallic Ag-Co nanoparticles. The nanoparticles were prepared via a sol-gel method by adding glucose as the reducing agent. The prepared nanoparticles were designated as Ag-NP, Co-NP and AgCo-NP. The successful incorporation of Ag/Co onto the silica surface were evidenced by TEM, FT-IR and DR/UV-Vis analysis. The TEM analysis showed the presence of small spherical shape nanoparticles with an average mean size of 3.18-3.57 nm. Through DR/UV-Vis analysis, the presence of Ag+ and cobalt in the oxidation state of +2 and +3 were confirmed, while FT-IR verified the presence of M-O and Si-O-M+ bond.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

480-484

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.P. Liu, E. Fullerton, O. Gutfleisch and D.J. Sellmyer: Nanoscale magnetic materials and Applications (Springer, US 2009).

Google Scholar

[2] Q.H. Tran, V.Q. Nguyen and A. T Le: Adv. Nat. Sci. Nanosci. Nanotechnol. Vol. 4 (2013), p.033002.

Google Scholar

[3] A. Haase, A. Mantion, P. Graf, J. Plendi, A.F. Thuenemann, W. Mejer, A. Taubert and A. Luch: Arch. Toxicol. Vol. 86 (2012), p.1089.

DOI: 10.1007/s00204-012-0836-0

Google Scholar

[4] G. Allaedini and A.B. Muhammad: J. Nanostructure Chem. Vol. 3 (2013), p.1.

Google Scholar

[5] A. Holewinski, J.C. Idrobo and S. Linic: Nat. Chem. Vol. 6 (2014), p.828.

Google Scholar

[6] A. Shah, L.U. Rahman, R. Qureshi and U.Z. Rehman: Rev. Adv. Mater. Sci. Vol. 30 (2011), p.133.

Google Scholar

[7] L. Ganga, B.G. Anderson and J.V. Grondelle: J. Catal. Vol. 206 (2002), p.60.

Google Scholar

[8] S.E. Dapurka, H. Kawanami, K. Komura, T. Yokoyama and Y. Ikushima: Appl. Catal. A: Gen. Vol. 346 (2010), p.112.

Google Scholar

[9] I.A. Rahman and V. Padevettan: J. Nanomater. Vol. 2012 (2012), p.1.

Google Scholar

[10] F. Adam, J. Andas and I.A. Rahman: J. Open Colloidal Sci. Vol. 4 (2011), p.16.

Google Scholar

[11] J. Chumee, N. Grisdanurak, A. Neramittagapong and J. Wittayakun: Sci. Tech. Adv. Mater. Vol. 10 (2009), p.1.

Google Scholar

[12] M. Spasova, M. Farley, U. Dahmen, U. Sobal, M. Hilgendorff, M. Giersig: J. Nanostruc. Chem. Vol. 43 (2011), p.10.

Google Scholar

[13] S. Xu, E.D. Walter, Z. Zhao, M.Y. Hu, X. Han, J.Z. Hu and X. Bao: J. Phys. Chem. C. Vol. 119 (2005), p.21219.

Google Scholar

[14] T.C. Prathna, N. Chandrasekaran, A. Mukherjee: Colloid Surf. A. Vol. 390 (2011), p.390.

Google Scholar

[15] F. Shahmi, M.A. Pasha, A.A. Hosseini and Z.S. Arabshahi: J. Nanosturc. Chem. Vol. 5 (2015), p.90.

Google Scholar

[16] V.H. Le, C.H.N. Thuc and H.H. Thuc: Nanoscale Res. Lett. Vol. 8 (2013), p.8.

Google Scholar

[17] S.H. Park, B.H. Kim, M. Selvaraj and T.G. Lee: J. Ind. Eng. Chem. Vol. 13 (2007), p.640.

Google Scholar

[18] D. Liu, X.Y. Quek, W.N.E. Cheo, R. Lau, A. Borgna and Y. Yang: J. Catal. Vol. 266 (2009), p.382.

Google Scholar

[19] T. Yamamoto, S. Takenaka, T. Tanaka and T. Baba: J. Phys. Conf. Ser. Vol. 190 (2009), p.2.

Google Scholar

[20] T. Somanathan, A. Pandurangan and D. Sathiyamoorthy: J. Mol. Catal. A: Chem. Vol. 256 (2006), p.196.

Google Scholar

[21] R. Nava, B. Pawelec, J. Morales, R.A. Ortega and J.L.G. Fierro: Micropor. Mesopor. Mater. Vol. 118 (2009), p.194.

Google Scholar