Performance of Newly-Fabricated Modular Surface Plasmon Resonance (mSPR) Sensor

Article Preview

Abstract:

Performance of modular surface plasmon resonance (mSPR) sensor based on refractive index is discussed in this paper. The sensor was built in house using a polychromatic light source, polarizer to produce a transverse magnetic wave, high refractive index waveguide, gold-coated disk, single channel cell and spectrometer for data analysis. A knob for adjusting the angle of the incident provides a means for ease of angle variation which simplifies the design of the instrument for portability purposes. In conventional SPR, the light source need to be delocalized for search of the resonance angle, making the instrument bulky in size and had to be laboratory-based. The efficiency of the newly designed SPR biosensor was tested using a various percentages of ethanol in deionized water. Observations on the shifts of the resonance wavelength with ethanol strength revealed that the SPR biosensor has a sensitivity of 64 nm/RIU and a resolution of ~102 RIU.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

459-464

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. J. Lee, T. T. Goodrich, and R. M. Corn, SPR imaging measurement of 1-D and 2d-DNA microarrays created from microfluidic channels on gold thin film, Anal. Chem. 73 (2001) 5525-5531.

DOI: 10.1021/ac010762s

Google Scholar

[2] D. Kamarun, N.H.K.A. Azem. S. H. Sarijo. M. Abdullah and A. F. Mohd, Nanopolyaniline for immobilization of biomolecules: premilinary study, Mater. Resea. Innov. 15 (2011), 193-197.

DOI: 10.1179/143307511x13031890749055

Google Scholar

[3] J. Homola, M. Piliarik and L. Párová, High-throughput SPR sensor for food safety, Biosens. Bioelectron, 24 (2009), 1399-1404.

DOI: 10.1016/j.bios.2008.08.012

Google Scholar

[4] E. Kretschmann and H. Raether, Radiative decay of non-radiative surface plasmon excited by ligh, Z. Naturforsch, A 23 (1968), 2135-2136.

DOI: 10.1515/zna-1968-1247

Google Scholar

[5] S. Scrarano, M. Mascini, A. Turner and M. Minunni, Surface plasmon resonance imaging for affinity-based biosensor", Biosens. Bioelectron, 25 (2010), 957-966.

DOI: 10.1016/j.bios.2009.08.039

Google Scholar

[6] Y. Shin, H. Kim, Y. Jung and B. Chung, a new plam-sized surface plasmon resonance (spr) biosensor based on modulation of a light source by a rotating mirror, Sens. Actuators B 150 (2010), 1-6.

DOI: 10.1016/j.snb.2010.08.006

Google Scholar

[7] P. Novo, V. Chu, and J. Conde, Integrated optical detection of autonomous capillary microfluidic immunoassays: a hand held point of care prototype, Biosens. Biolectron, 57 (2014), 284-291.

DOI: 10.1016/j.bios.2014.02.009

Google Scholar

[8] K. Retra, H. Irth, and J. E. van Muiklwijk-Koezen, surface plasmon resonance biosensor analysis as a useful tool in FBDD, Drug Discovery Today: Technologies, 3 (2010) 181-187.

DOI: 10.1016/j.ddtec.2010.11.012

Google Scholar

[9] Information on http: /www. ibis-spr. n1/p.1. php.

Google Scholar

[10] T. M. Chinowsky, J. G. Quinn, D. U, Bartholomew, R. Kaiser and J. L. Elkind, Perfomance of the spreeta 2000 integrated surface plasmon resonance affinity sensor, Sensors and actua B 91 (2003) 699-705.

DOI: 10.1016/s0925-4005(03)00113-8

Google Scholar

[11] W. M. A. W. Ahamad, D. Kamarun, M. K. A. Rahman and M. S. Kamarudin, Modular surface plasmon resonance (spr) biosensor based on wavelength modulation, Adv. Mater. Reseacrh, 1107 (2015) 699-705.

DOI: 10.4028/www.scientific.net/amr.1107.699

Google Scholar

[12] K, Wang and X. Zhang, Double-incident angle technique for surface plasmon resonance measurements, Optics. Commun, 351 (2015) 140-143.

DOI: 10.1016/j.optcom.2015.04.054

Google Scholar

[13] J. Li, R. Cheng, M. Wang, S. Wang, H. Liang, X. Hu, X. Sun, J. Zhu, L. Ma, M. Jiang and J. Hu, A low cost of surface plasmon resonance biosensor using a laser liner generator, Optic. Communi, 349 (20015) 82-88.

DOI: 10.1016/j.optcom.2015.03.035

Google Scholar

[14] J. Dostálek and J. Homola, Surface plasmon resonance sensor based on array of diffraction gratings for highly parallelized observation of bio-molecular interactions, Sens. Actuators B Chem, 129 (2008) 303-310.

DOI: 10.1016/j.snb.2007.08.012

Google Scholar

[15] R. Karlsson, and A. Fält, Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors, J. Immunol. Methods, 200 (1997) 1-2.

DOI: 10.1016/s0022-1759(96)00195-0

Google Scholar

[16] G. G. Nenninger, M. Piliarik, and J. Homola, Data analysis for optical sensors based on spectroscopy of surface plasmon, Meas. Sci. Technol, 13(12) (2002), 2038-(2046).

DOI: 10.1088/0957-0233/13/12/332

Google Scholar

[17] J. T. Hastings. J. Guo, P. D. Keathley, P. B. Kumaresh, Y. Wei, S. Law, and L. G. Bachas, Optimal-sensing referenced sensing using long- and short- range surface plasmon, Opt. Express, 15(26) (2007), 17661-17672.

DOI: 10.1364/oe.15.017661

Google Scholar

[18] M. Packirisamy, H. SadAbadi, S. Badilescu and R. Wüthrich, Integration of gold nanoparticles in PDMS microfluidic for lab-on-chip plasmonic biosensing of growth hormones", Biosens. Bioelectron, 44 (2013) 77-84.

DOI: 10.1016/j.bios.2013.01.016

Google Scholar