Computer Simulation of AUV Navigation System Using Fish Lateral Line Sensing Mechanism

Article Preview

Abstract:

Based on the study of fish lateral line sensing mechanism, integrated fluid dynamics, boundary layer theory, coupling theory and so on. To establish a neural network model similar to the fish neuromas model. After the numerical calculation and simulation analysis to simulate fish lateral line system, we can get the conclusions to apply to autonomous underwater vehicle (AUV) navigation and target recognition. Provided a new method for AUV navigation and environment perception. Computer simulation results presented that based on the fish lateral line sensing mechanism to build a perception model, AUV can identify a new water condition distinguishably. This discovery can be used in navigation and positioning of AUV.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

302-308

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.T. Abdulsadda, X. Tan, An artificial lateral line system using IPMC sensor arrays, Int. J. Smart Nano Mater. 3 (2012) 226-242.

DOI: 10.1080/19475411.2011.650233

Google Scholar

[2] E. Chen, J. Guo, Real time map generation using sidescan sonar scanlines for unmanned underwater vehicles, Ocean Eng. 91 (2014) 252–262.

DOI: 10.1016/j.oceaneng.2014.09.017

Google Scholar

[3] J. Chen, J. Engel, N. Chen, S. Pandya, S. Coombs, C. Liu, Artificial lateral line and hydrodynamic object tracking, IEEE2006, Turkey, 2006, 694-697.

DOI: 10.1109/memsys.2006.1627894

Google Scholar

[4] T.Y. Hsieh, S.W. Huang, L.J. Mu, E. Chen, J. Guo, Artificial lateral line design for robotic fish, IEEE2011, Tokyo, 2011, 5774165.

Google Scholar

[5] Y. Yang, N. Nguyen, N. Chen, M. Lockwood, C. Tucker, H. Hu, H. Bleckmann, C. Liu, D.L. Jones, Artificial lateral line with biomimetic neuromasts to emulate fish sensing, Bioinspir. Biomimetics. 5 (2010) 1206.

DOI: 10.1088/1748-3182/5/1/016001

Google Scholar

[6] R. Venturelli1, O. Akanyeti1, Hydrodynamic pressure sensing with an artificial lateral line in steady and unsteady flows, Bioinspir. Biomimetics. 7 (2012) 036004.

DOI: 10.1088/1748-3182/7/3/036004

Google Scholar

[7] Y.S. Ryuh, G.H. Yang, J.D. Liu, A school of robotic fish for mariculture monitoring in the sea coast, J. Bionic. Eng. 12 (2015) 37–46.

DOI: 10.1016/s1672-6529(14)60098-6

Google Scholar

[8] F. Rizzi, A. Qualtieri, Biomimetics of underwater hair cell sensing, Microelectron. ENG. 132 (2015) 90–97.

DOI: 10.1016/j.mee.2014.10.011

Google Scholar

[9] A. Mansour, Y.K. Aghil, Three-dimensional optimal path planning for waypoint guidance of an autonomous underwater vehicle, Rob. Autom. Syst. 67 (2015) 23-32.

DOI: 10.1016/j.robot.2014.10.007

Google Scholar

[10] Chambers L D, Akanyeti O, Venturelli R, et al. A fish perspective: detecting flow features while moving using an artificial lateral line in steady and unsteady flow[J]. Journal of the Royal Society Interface, 2014, 11(99): 20140467.

DOI: 10.1098/rsif.2014.0467

Google Scholar

[11] Asadnia M, Kottapalli A G P, Miao J, et al. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena[J]. Journal of The Royal Society Interface, 2015, 12(111): 20150322.

DOI: 10.1098/rsif.2015.0322

Google Scholar

[12] Rizzi, F., Qualtieri, A., Dattoma, T., Epifani, G., De Vittorio, M., Biomimetics of underwater hair cell sensing. Microelectronic Engineering 132, 90-97. (2015).

DOI: 10.1016/j.mee.2014.10.011

Google Scholar