[1]
E.T.H. Vink, K.R. Rabago, D.A. Glassner, P.R. Gruber, Applications of life cycle assessment to Nature-Works™ polylactide (PLA) production, Polym. Degradation Stab. 80 (2003) 403-419.
DOI: 10.1016/s0141-3910(02)00372-5
Google Scholar
[2]
M. Kakiage, T. Ichikawa, T. Yamanobe, H. Uehara, D. Sawai, Structure and property gradation from surface to bulk of poly(L-lactic acid)/poly(D-lactic acid) blended films as estimated from nanoscratch tests using scanning probe microscopy, ACS. Appl. Mater. Interfaces. 2 (2010).
DOI: 10.1021/am900896q
Google Scholar
[3]
A.M. Gajria, V. Dave, R.A. Gross, S.P. McCarthy, Miscibility and biodegradability of blends of poly(lactic acid) and poly(vinyl acetate). Polymer. 37 (1996) 437-7444.
DOI: 10.1016/0032-3861(96)82913-2
Google Scholar
[4]
Y. Li, H. Shimizu, Compatibilization by homopolymer: significant improvements in the modulus and tensile strength of PPC/PMMA blends by the addition of a small amount of PVAC. ACS. Appl. Mater. Interfaces. 1 (2009) 1650-1655.
DOI: 10.1021/am900314k
Google Scholar
[5]
M. Yao, H. Deng, F. Mai, K. Wang, Q. Zhang, F. Chen, Q. Fu, Modification of poly(lactic acid)/poly(propylene carbonate) blends through melt compounding with maleic anhydride, Express Polym. Lett. 5 (2011) 937-949.
DOI: 10.3144/expresspolymlett.2011.92
Google Scholar
[6]
C.H. Kim, K.Y. Cho, E.J. Choi, J.K. Park, Effect of P(/LA-co-εCL) on the compatibility and crystallization behavior of PCL/PLLA blends, Journal of Applied, J. Appl. Polym. Sci. 77 (2000) 226-231.
DOI: 10.1002/(sici)1097-4628(20000705)77:1<226::aid-app29>3.0.co;2-8
Google Scholar
[7]
M. Baiardo, G. Frisoni, M. Scandola, M. Rimelen, D. Lips, K. Ruffieux, E. Wintermantel, Thermal and mechanical properties of plasticized poly(L-lactic acid), J. Appl. Polym. Sci. 90 (2003) 1731-1738.
DOI: 10.1002/app.12549
Google Scholar
[8]
S. Jacobsen, H.G. Fritz, Plasticizing polylactide-The effect of different plasticizers on the mechanical properties, Polym. Eng. Sci. 39 (1999) 1303-1310.
DOI: 10.1002/pen.11517
Google Scholar
[9]
S.K. Goel, E.J. Beckman, Generation of microcellular polymeric foams using supercritical carbon dioxide. II: cell growth and skin formation, Polym. Eng. Sci. 34 (1994) 1148-56.
DOI: 10.1002/pen.760341408
Google Scholar
[10]
L. Li, Z.X. Xin, J.K. Kim, Fabrication of fine-celled PP/Ground tire rubber powder composites using supercritical carbon dioxide, Cell Polym. 30 (2011) 111-136.
DOI: 10.1177/026248931103000302
Google Scholar
[11]
J.K. Dong, X. Deng, X.Z. Zhen, D.S. Bang, K. Pal, J.K. Kim, Well-controlled microcellular PLA/Silk biodegradable composite foams with supercritical CO2, Macromol. Mater. Eng. 294 (2009) 620-624.
DOI: 10.1002/mame.200900103
Google Scholar
[12]
Y. Fujimoto, S.S. Ray, M. Okamoto, A. Ogami, K. Yamada, K. Ueda, Well-sontrolled biodegradable nanocomposite foams: from microcellular to nanocellular, Macromol. Rapid Commun. 24 (2003) 457-461.
DOI: 10.1002/marc.200390068
Google Scholar
[13]
X.F. Ma, J.G. Yu, N. Wang, Compatibility characterization of poly(lactic acid)/poly(propylene carbonate) blends, J. Polym. Sci. Part. B. Polym. Phys. 44 (2006) 94-101.
DOI: 10.1002/polb.20669
Google Scholar
[14]
Z.M. Xu, X.L. Jiang, T. Liu, G.H. Hu, L. Zhao, Z.N. Zhu, W.K. Yuan, Foaming of polypropylene with supercritical carbon dioxide, J. Supercritical Fluids. 41 ( 2007) 299-310.
DOI: 10.1016/j.supflu.2006.09.007
Google Scholar
[15]
D. Kohlhoff, M. Ohshima, Open cell microcellular foams of polylactic acid (PLA)-based blends with semi-interpenetrating polymer networks, Macromol. Mater. Eng. 296 (2011) 770-777.
DOI: 10.1002/mame.201000371
Google Scholar
[16]
P.C. Lee, J. Wang, C.B. Park, Extruded open-cell foams using two semicrystalline polymers with different crystallization temperatures, Ind. Eng. Chem. Res. 45 (2006) 175-181.
DOI: 10.1021/ie050498j
Google Scholar