Microcellular Foaming of Biodegradable PLA/PPC Composite Using Supercritical CO2

Article Preview

Abstract:

Poly (lactic acid) (PLA)/poly (propylene carbonate) (PPC) composite foams were microcellular foamed with CO2 through a batch foaming process. The influences of PPC contents, foaming temperature, and saturation pressure on the cell structure and foam density were investigated. The biodegradable PLA/PPC composite foam showed a controlled structure of microcellular and nanocellular. With an increase in saturation temperature and pressure, the cell size was increasing and both the cell density and foam density were decreased simultaneously.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

247-252

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.T.H. Vink, K.R. Rabago, D.A. Glassner, P.R. Gruber, Applications of life cycle assessment to Nature-Works™ polylactide (PLA) production, Polym. Degradation Stab. 80 (2003) 403-419.

DOI: 10.1016/s0141-3910(02)00372-5

Google Scholar

[2] M. Kakiage, T. Ichikawa, T. Yamanobe, H. Uehara, D. Sawai, Structure and property gradation from surface to bulk of poly(L-lactic acid)/poly(D-lactic acid) blended films as estimated from nanoscratch tests using scanning probe microscopy, ACS. Appl. Mater. Interfaces. 2 (2010).

DOI: 10.1021/am900896q

Google Scholar

[3] A.M. Gajria, V. Dave, R.A. Gross, S.P. McCarthy, Miscibility and biodegradability of blends of poly(lactic acid) and poly(vinyl acetate). Polymer. 37 (1996) 437-7444.

DOI: 10.1016/0032-3861(96)82913-2

Google Scholar

[4] Y. Li, H. Shimizu, Compatibilization by homopolymer: significant improvements in the modulus and tensile strength of PPC/PMMA blends by the addition of a small amount of PVAC. ACS. Appl. Mater. Interfaces. 1 (2009) 1650-1655.

DOI: 10.1021/am900314k

Google Scholar

[5] M. Yao, H. Deng, F. Mai, K. Wang, Q. Zhang, F. Chen, Q. Fu, Modification of poly(lactic acid)/poly(propylene carbonate) blends through melt compounding with maleic anhydride, Express Polym. Lett. 5 (2011) 937-949.

DOI: 10.3144/expresspolymlett.2011.92

Google Scholar

[6] C.H. Kim, K.Y. Cho, E.J. Choi, J.K. Park, Effect of P(/LA-co-εCL) on the compatibility and crystallization behavior of PCL/PLLA blends, Journal of Applied, J. Appl. Polym. Sci. 77 (2000) 226-231.

DOI: 10.1002/(sici)1097-4628(20000705)77:1<226::aid-app29>3.0.co;2-8

Google Scholar

[7] M. Baiardo, G. Frisoni, M. Scandola, M. Rimelen, D. Lips, K. Ruffieux, E. Wintermantel, Thermal and mechanical properties of plasticized poly(L-lactic acid), J. Appl. Polym. Sci. 90 (2003) 1731-1738.

DOI: 10.1002/app.12549

Google Scholar

[8] S. Jacobsen, H.G. Fritz, Plasticizing polylactide-The effect of different plasticizers on the mechanical properties, Polym. Eng. Sci. 39 (1999) 1303-1310.

DOI: 10.1002/pen.11517

Google Scholar

[9] S.K. Goel, E.J. Beckman, Generation of microcellular polymeric foams using supercritical carbon dioxide. II: cell growth and skin formation, Polym. Eng. Sci. 34 (1994) 1148-56.

DOI: 10.1002/pen.760341408

Google Scholar

[10] L. Li, Z.X. Xin, J.K. Kim, Fabrication of fine-celled PP/Ground tire rubber powder composites using supercritical carbon dioxide, Cell Polym. 30 (2011) 111-136.

DOI: 10.1177/026248931103000302

Google Scholar

[11] J.K. Dong, X. Deng, X.Z. Zhen, D.S. Bang, K. Pal, J.K. Kim, Well-controlled microcellular PLA/Silk biodegradable composite foams with supercritical CO2, Macromol. Mater. Eng. 294 (2009) 620-624.

DOI: 10.1002/mame.200900103

Google Scholar

[12] Y. Fujimoto, S.S. Ray, M. Okamoto, A. Ogami, K. Yamada, K. Ueda, Well-sontrolled biodegradable nanocomposite foams: from microcellular to nanocellular, Macromol. Rapid Commun. 24 (2003) 457-461.

DOI: 10.1002/marc.200390068

Google Scholar

[13] X.F. Ma, J.G. Yu, N. Wang, Compatibility characterization of poly(lactic acid)/poly(propylene carbonate) blends, J. Polym. Sci. Part. B. Polym. Phys. 44 (2006) 94-101.

DOI: 10.1002/polb.20669

Google Scholar

[14] Z.M. Xu, X.L. Jiang, T. Liu, G.H. Hu, L. Zhao, Z.N. Zhu, W.K. Yuan, Foaming of polypropylene with supercritical carbon dioxide, J. Supercritical Fluids. 41 ( 2007) 299-310.

DOI: 10.1016/j.supflu.2006.09.007

Google Scholar

[15] D. Kohlhoff, M. Ohshima, Open cell microcellular foams of polylactic acid (PLA)-based blends with semi-interpenetrating polymer networks, Macromol. Mater. Eng. 296 (2011) 770-777.

DOI: 10.1002/mame.201000371

Google Scholar

[16] P.C. Lee, J. Wang, C.B. Park, Extruded open-cell foams using two semicrystalline polymers with different crystallization temperatures, Ind. Eng. Chem. Res. 45 (2006) 175-181.

DOI: 10.1021/ie050498j

Google Scholar