[1]
N. Chawla, K.K. Chawla, Metal matrix composites, Springer, New York, (2006).
Google Scholar
[2]
M. Kouzeli, A. Mortensen, Size dependent strengthening in particle reinforced aluminium, Acta. Mater. 50 (2002) 39-51.
DOI: 10.1016/s1359-6454(01)00327-5
Google Scholar
[3]
W.M. Thomas, et al, G.B.P.A.N. 9125978. 8, Editor. December (1991).
Google Scholar
[4]
A.P. Reynolds, Visualisation of material flow in autogenous friction stir welds, Sci. Technol. Weld. Join. 5 (2000) 120-124.
Google Scholar
[5]
J. Guo, P. Gougeon, X.G. Chen, Microstructure evolution and mechanical properties of dissimilar friction stir welded joints between AA1100-B4C MMC and AA6063 alloy, Mater. Sci. Eng. A. 553 (2012) 149-156.
DOI: 10.1016/j.msea.2012.06.004
Google Scholar
[6]
R.S. Mishra, Z.Y. Ma, I. Charit, Friction stir processing: a novel technique for fabrication of surface composite, Mater. Sci. Eng. 341 (2003) 307-310.
DOI: 10.1016/s0921-5093(02)00199-5
Google Scholar
[7]
M. Azizieh, A.H. Kokabi, P. Abachi, Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing, Mater. Des. 32 (2011) 2034-(2041).
DOI: 10.1016/j.matdes.2010.11.055
Google Scholar
[8]
J.F. Guo, et al, Effects of nano-Al2O3 particle addition on grain structure evolution and mechanical behaviour of friction-stir-processed, Al. Mater. Sci. Eng. 602 (2014) 143-149.
DOI: 10.1016/j.msea.2014.02.022
Google Scholar
[9]
Y.S. Sato, M. Urata, H. Kokawa, Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hard enable aluminium alloy 6063, Metall. Mat. Trans. A. Phys. Metall. Mat. Sci. 33 (2002) 625-635.
DOI: 10.1007/s11661-002-0124-3
Google Scholar
[10]
W.S. Miller, F.J. Humphreys, Strengthening mechanisms in particulate metal matrix composites, Scr. Metall. Mater. 25 (1991) 33-38.
Google Scholar
[11]
J. Qu, et al, Improving the tribological characteristics of aluminum 6061 alloy by surface compositing with sub-micro-size ceramic particles via friction stir processing, Wear. 271 (2011) 1940-(1945).
DOI: 10.1016/j.wear.2010.11.046
Google Scholar
[12]
B. Zahmatkesh, M.H. Enayati, A novel approach for development of surface nanocomposite by friction stir processing, Mater. Sci. Eng. 527 (2010) 6734-6740.
DOI: 10.1016/j.msea.2010.07.024
Google Scholar
[13]
Z. Du, et al, Friction stir processing (FSP) of Al-CNT composites, Proc. Inst. Mech. Eng. Part L. J. Mat. Des. Appl. (2015).
Google Scholar
[14]
J. Q. Su, T.W. Nelson, C.J. Sterling, Microstructure evolution during FSW/FSP of high strength aluminum alloys, Mater. Sci. Eng. 405 (2005) 277-286.
DOI: 10.1016/j.msea.2005.06.009
Google Scholar
[15]
J.M. Root, D.P. Field, T.W. Nelson, Crystallographic texture in the friction-stir-welded metal matrix composite Al6061 with 10 Vol Pct Al2O3, Metall. Mat. Trans. A. Phys. Metall. Mat. Sci. 40 (2009) 2109-2114.
DOI: 10.1007/s11661-009-9883-4
Google Scholar
[16]
A. Rollett, et al, Recrystallization and Related Annealing Phenomena. 2004: Elsevier.
Google Scholar
[17]
ASM handbook/prepared under the direction of the ASM International Handbook Committee, 1986: Mat. Park, OH: ASM Int.
Google Scholar