Comparison of Milling Strategies when Machining Freeform Surfaces

Article Preview

Abstract:

The article deals with comparison and evaluation of the milling strategies that are available in CAM systems and are used to produce components with freeform surfaces. For the purpose of the experiment, sample with freeform features was designed to employ different milling strategies when 3 axis machining. Evaluation of the milling strategies was carried out by surface roughness measurement, comparison of the actual machining time with a simulation time as well as visual control of the sample surface with a surface obtained in simulation. Acquired research results can be utilized within production process of tools with sculptured surfaces, such as tools for metal sheet forming, dies, molds for plastics and many others.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

18-25

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Selimovic, Improved algorithms for the projection of points on NURBS curves and surfaces, Computer Aided Geometric Design. 23(2006) 439–445.

DOI: 10.1016/j.cagd.2006.01.007

Google Scholar

[2] E. van den Berg, W.F. Bronsvoort, J. S. M. Vergeest, Freeform feature modeling: concepts and prospects, Computers in Industry. 49 (2002) 217-233.

DOI: 10.1016/s0166-3615(02)00080-5

Google Scholar

[3] C. K. Toh, Design, evaluation and optimization of cutter path strategies when high speed machining hardened mold and die materials, Materials and Design. 26 (2005) 517–533.

DOI: 10.1016/j.matdes.2004.07.019

Google Scholar

[4] I. Česáková, M. Zetek, V. Švarc, Evaluation of cutting tool parameters, in: 24th DAAAM International Symposium, DAAAM International, Vienna, 2014, pp.1-6.

DOI: 10.1016/j.proeng.2014.03.098

Google Scholar

[5] A. M. Ramos, C. Relvas, J. A. Simões, The influence of finishing milling strategies on texture, roughness and dimensional deviations on the machining of complex surfaces, J. Materials Processing Technology. 136 (2003) 209–216.

DOI: 10.1016/s0924-0136(03)00160-2

Google Scholar

[6] M. Kaymakci, I. Lazoglu, Tool path selection strategies for complex sculptured surface machining, Machining Science and Technology. 12 (2008) 119–132.

DOI: 10.1080/10910340801913979

Google Scholar

[7] J. Peterka, P. Pokorný, M. Polakovič, I. Buranský, Surface roughness by copy milling, Manufacturing and Industrial Engineering. 8 (2009) 15 -16.

Google Scholar

[8] J. Beňo, I. Maňková, Technologické a materiálové činitele obrábania, Vienala, Košice, (2004).

Google Scholar

[9] Y. Quinsat, L. Sabourin, C. Lartigue, Surface topography in ball end milling process: Description of a 3D surface roughness parameter, J. Materials Processing Technology. 195 (2008) 135–143.

DOI: 10.1016/j.jmatprotec.2007.04.129

Google Scholar

[10] N. Vidakis, A. Antoniadis, C. Savakis, P. Gotsis, Simulation of ball end tools milling, in: International Conference ICPR, Prague, 2001, p.1 – 9.

Google Scholar

[11] J. Beňo, Teoretické základy inovačných technológií, SjF TU v Košiciach, Košice, (2010).

Google Scholar

[12] K. Schützer, E. Abele, C. Stroh, C. von Gyldenfeldt, Using advanced CAM-systems for optimized hsc-machining of complex freeform surfaces, J. the Brazilian Society of Mechanical Sciences and Engineering. 29 (2007) 313-316.

DOI: 10.1590/s1678-58782007000300012

Google Scholar

[13] A. Logins, T. Torims, The influence of high-speed milling strategies on 3D surface roughness parameters, Procedia Engineering. 100 (2015) 1253-1261.

DOI: 10.1016/j.proeng.2015.01.491

Google Scholar

[14] P. Ižol, M. Fabian, M. Kopas, G. Fedorko, Evaluation of Machining Strategies for Production of Free Form Surfaces Using 3-Axle Milling, Manufacturing Technology. 13 (2013) 458-465.

DOI: 10.21062/ujep/x.2013/a/1213-2489/mt/13/4/458

Google Scholar

[15] K. Erkorkmaz, S.E. Layegh, I. Lazoglu, H. Erdim, Feed rate optimization for freeform milling considering constraints from the feed drive system and process mechanics, CIRP Annals - Manufacturing Technology. 62 (2013) 395–398.

DOI: 10.1016/j.cirp.2013.03.084

Google Scholar

[16] P. Krajnik, J. Kopač, Modern machining of die and mold tools, J. Materials Processing Technology. 157–158 (2004) 543–552.

DOI: 10.1016/j.jmatprotec.2004.07.146

Google Scholar