Numerical Investigations of the Effect of Process Parameters on Residual Stresses, Strains and Quality of Final Product in Blanking Using SPH Method

Article Preview

Abstract:

The shearing process such as the blanking of sheet metals has been used often to prepare workpieces for subsequent forming operations. This process consists in separating a blank from a sheet by means of a high-localized shear deformation due to the action of a punch. Blanking modelling is becoming an increasingly important tool in gaining understanding and improving this process. At the moment a fundamental problem in numerical modelling of blanking processes is an excessive element distortion in a finite-element simulation. In this study, we present a hybrid modelling approach, SPH (smoothed particle hydrodynamics) coupled FEM method to simulate the blanking process. This new approach involves several advantages compared to the traditional finite element method for example: neglect mesh tangling and distortion problems, does not need to use material separation criterion. The physical, mathematical and computer model of the process is elaborated. The application in ANSYS/LS-DYNA program is developed. The examination and analysis of influence of process technological parameters for example: the clearance, tool geometry, blanking velocity on residual stresses, strains and quality of final product using the SPH method is analyzed. The results of computer simulations can be used to forecasting quality of the parts optimization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

238-245

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Bohdal, L. Kukielka, K. Kukielka, A. Kulakowska, L. Malag, R. Patyk, Three Dimensional Finite Element Simulation of Sheet Metal Blanking Process, Applied Mechanics and Materials 474 (2014) 430-435.

DOI: 10.4028/www.scientific.net/amm.474.430

Google Scholar

[2] P. Kaldunski, L. Kukielka, Numerical Analysis and Simulation of Drawpiece Forming Process by Finite Element Method, Applied Mechanics and Materials 474 (2014) 153-158.

DOI: 10.4028/www.scientific.net/amm.474.153

Google Scholar

[3] R. Patyk, A. Kulakowska, L. Bohdal, Ekologiczne, ekonomiczne i eksploatacyjne aspekty stosowania obróbki nagniataniem (in Polish), Annual Set The Environment Protection 16 (2014) 351-362.

Google Scholar

[4] J. Chodor, L. Kukielka, Numerical analysis of micromachining of C45 steel with single abrasive grain. GAMM 79th Annual Meeting of the International Association of Applied Mathematics and Mechanics, 31 March – 4 April, Bremen, Germany (2008).

DOI: 10.1002/pamm.200810715

Google Scholar

[5] J. Chodor, L. Kukielka, Numerical analysis of chip formation during machining for different value of failure strain, PAMM 7 (1) (2008) 4030031-4030032.

DOI: 10.1002/pamm.200700832

Google Scholar

[6] J. Chodor, L. Kukielka, Using Nonlinear Contact Mechanics in Process of Tool Edge Movement on Deformable Body to Analysis of Cutting and Sliding Burnishing Processes, Applied Mechanics and Materials 474 (2014) 339-344.

DOI: 10.4028/www.scientific.net/amm.474.339

Google Scholar

[7] L. Kukielka, A. Kulakowska, R. Patyk, Numerical modeling and simulation of the movable contact tool-worpiece and application in technological processes, Journal of Systemics, Cybernetics and Informatics 8/3 (2010) 36-41.

Google Scholar

[8] A. Kulakowska, L. Kukielka, Numerical analysis and experimental researches of burnishing rolling process with taking into account deviations in the surface asperities outline after previous treatment, Steel Research International 2 (2008) 42-48.

DOI: 10.1002/pamm.200810733

Google Scholar

[9] A. Kulakowska, Problems of surface preparation under burnishing rolling in aspect of product quality, Steel Research International 81/9 (2010).

Google Scholar

[10] A. Kulakowska, Experimental researches of burnishing rolling process of regular surface asperities prepared in turning process. Steel Research International 2012. Special Edition: 14th International Conference on Metal Forming, pp.127-131.

Google Scholar

[11] A. Kulakowska, L. Kukielka, K. Kukielka, R. Patyk, L. Malag, L. Bohdal, Possibility of Steering of Product Surface Layers Properties in Burnishing Rolling Process, Applied Mechanics and Materials 474 (2014) 442-447.

DOI: 10.4028/www.scientific.net/amm.474.442

Google Scholar

[12] A. Kulakowska, R. Patyk, L. Bohdal, Zastosowanie obróbki nagniataniem w tworzeniu ekologicznego produktu (in Polish), Annual Set The Environment Protection 16 (2014) 323-335.

Google Scholar

[13] L. Kukielka, K. Kukielka, A. Kulakowska, R. Patyk, L. Malag, L. Bohdal, Incremental Modelling and Numerical Solution of the Contact Problem between Movable Elastic and Elastic/Visco-Plastic Bodies and Application in the Technological Processes, Applied Mechanics and Materials 474 (2014).

DOI: 10.4028/www.scientific.net/amm.474.159

Google Scholar

[14] K. Kukielka, L. Kukielka, L. Bohdal, A. Kulakowska, L. Malag, R. Patyk, 3D Numerical Analysis the State of Elastic/Visco-Plastic Strain in the External Round Thread Rolled on Cold, Applied Mechanics and Materials 474 (2014) 436-441.

DOI: 10.4028/www.scientific.net/amm.474.436

Google Scholar

[15] S. Faszynka, J. Lewandowski, D. Rozumek, Numerical Analysis of Stress and Strain in Specimens with Rectangular Cross-Section Subjected to Torsion and Bending with Torsion, Acta Mechanica et Automatica 10, no 1 (35)/(2016).

DOI: 10.1515/ama-2016-0001

Google Scholar

[16] A. Bohojło-Wiśniewska, Numerical Modelling of Humid Air Flow Around a Porous Body, Acta Mechanica et Automatica 9, no 3 (33)/(2015).

DOI: 10.1515/ama-2015-0027

Google Scholar

[17] J. Rojek, Sz. Nosewicz, K. Pietrzak, M. Chmielewski, Simulation of Powder Sintering Using a Discrete Element Model, Acta Mechanica et Automatica 7, no 3 (25)/(2013).

DOI: 10.2478/ama-2013-0030

Google Scholar

[18] L. Bohdal, A. Kulakowska, R. Patyk, Analysis of slitting of aluminium body panels in the aspect of scrap reduction, Annual Set The Environment Protection 16 (2014) 105-114.

Google Scholar

[19] E. Bagci, 3-D numerical analysis of orthogonal cutting process via mesh-free method, International Journal of Physical Sciences 6 (2011) 1267-1282.

Google Scholar

[20] Y. Xi, M. Bermingham, G. Wang, M. Dargusch, SPH/FE modeling of cutting force and chip formation during thermally assisted machining of Ti6Al4V alloy, Computational Materials Science 84 (2014) 188-197.

DOI: 10.1016/j.commatsci.2013.12.018

Google Scholar

[21] L. Bohdal, L. Kukielka, Application of variational and FEM methods to the modelling and numerical analysis of guillotining process for geometrical and physical nonlinearity, Mechanika 20(2) (2014) 197-204.

DOI: 10.5755/j01.mech.20.2.6941

Google Scholar

[22] J. Chodor, L. Kukielka, Using Nonlinear Contact Mechanics in Process of Tool Edge Movement on Deformable Body to Analysis of Cutting and Sliding Burnishing Processes, Applied Mechanics and Materials 474 (2014) 339-344.

DOI: 10.4028/www.scientific.net/amm.474.339

Google Scholar

[23] L. Kukielka, K. Geleta, K. Kukielka, Modelling of Initial and Boundary Problems with Geometrical and Physical Nonlinearity and its Application in Burnishing Processes, Steel Research International. Special Edition: 14th International Conference Metal Forming, 2012, pp.1375-1378.

Google Scholar

[24] L. Malag, L. Kukielka, K. Kukielka, A. Kulakowska, L. Bohdal, R. Patyk, Problems Determining of the Mechanical Properties of Metallic Materials from the Tensile Test in the Aspect of Numerical Calculations of the Technological Processes, Applied Mechanics and Materials 474 (2014).

DOI: 10.4028/www.scientific.net/amm.474.454

Google Scholar

[25] R. Patyk, L. Kukielka, Optimization of geometrical parameters of regular triangular asperities of surface put to smooth burnishing, Steel Research International 2 (2008) 642 - 647.

Google Scholar

[26] R. Patyk , New method of technological surface layer shaping of machine parts during duplex burnishing rolling process. Steel Research International 2012, Special Edition: 14th International Conference on Metal Forming.

Google Scholar

[27] R. Patyk, L. Kukielka, K. Kukielka, A. Kulakowska, L. Malag, L. Bohdal, Numerical Study of the Influence of Surface Regular Asperities Prepared in Previous Treatment by Embossing Process on the Object Surface Layer State after Burnishing, Applied Mechanics and Materials 474 (2014).

DOI: 10.4028/www.scientific.net/amm.474.448

Google Scholar

[28] W. Ogierman, G. Kokot, Numerical analysis of the influence of the blast wave on the composite structure, Mechanika 20(2) (2014) 147-152.

Google Scholar

[29] S. Abolfazl Zahedi, M. Demiral, A. Roy, V. Silberschmidt, FE/SPH modelling of orthogonal micro-machining of f. c. c. single crystal, Computational Materials Science 78 (2013) 104–109.

DOI: 10.1016/j.commatsci.2013.05.022

Google Scholar

[30] RA. Gingold, JJ. Monaghan, Smooth particle hydrodynamics: theory and application to non-spherical stars, Monthly Notices of the Royal Astronomical Society 181 (1977) 375-389.

DOI: 10.1093/mnras/181.3.375

Google Scholar

[31] R. Das, PW. Cleary, Modeling plastic deformation and thermal response in welding using smoothed particle hydrodynamics, 16th Australasian fluid mechanics conference, 2–7 December (2007).

Google Scholar

[32] J. Domski, J. Katzer, Load-deflection characteristic of fibre concrete based on waste ceramic aggregate, Annual Set The Environment Protection 15 (2013) 213-230.

Google Scholar

[33] M. K. Babouri, N. Ouelaa, A. Djebala, Temporal and frequential analysis of the tools wear evolution Mechanika 20(2) (2014) 205-212.

DOI: 10.5755/j01.mech.20.2.6933

Google Scholar

[34] P. Kałduński, L. Kukiełka, Dynamic nonlinear modelling of deep drawing process on the curved line drawing die with planar anisotropy by Finite Element Method, Machine Dynamics Research 34 (1) (2010) 38-43.

Google Scholar