Modeling the Failure Tree Analysis for Safety-Critical Systems in the Production of Hazardous Materials

Article Preview

Abstract:

During a manufacturing process of automotive clutch an explosive substance – xenon is produced. Concentration of this substance must be monitored. Implementation of controls is performed by a safety-critical functions control system.Among main role during the process of risk assessment analysis belong determination of danger and dangerous events associated with the devices. Proactive planning errors and the use of appropriate standards can greatly reduce formation disorders thereby reducing the probability of dangerous consequences. The standard safety subsystems architectures and computation methods for determining the failure intensity is listed in the standards IEC 61508 and IEC 61511. These standards contain information tables with the results of these computations for selected parameter values.We propose a complete failure probability model for the safety functions of the control system. This model is designed to compute the intensity of the critical failure for the standard channel architectures.These architectures were designed with respect to the standard IEC 61508 and were implemented in Matlab.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

307-315

Citation:

Online since:

August 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.G. Ford, W.G. Gulland, C. R. Howard, T. Kellacher, W.H. Smith : Applying the latest standard for Functional Safety - IEC 61511. [online]. Available on internet: http: /wildeanalysis. co. uk/casestudies/functional-safety-iec-61511.

DOI: 10.3403/30363270

Google Scholar

[2] J. Gausemeier, F. J. Rammig, W. Schäfer: Design Methodology for Intelligent Technical Systems. Springer Science & Business Media, 2014, ISBN 978-3-642-45435-6, p.376.

Google Scholar

[3] W. G. Gulland: Methods of Determining Safety Integrity Level (SIL) Requirements - Pros and Cons, Proceedings of the Safety-Critical Systems Symposium, (2004).

DOI: 10.1007/978-0-85729-408-1_6

Google Scholar

[4] A. Janota, J. Spalek, Z. Brtková, J. Hrbček: Úrovne integrity bezpečnosti v iniciatíve eSafety. [online]. Available on internet: http: /kris. uniza. sk/janota/dokumenty/NavAge06-023l. pdf.

Google Scholar

[5] D. Mudrončík, M. Gálik: Normy pre tvorbu softvéru riadiacich systémov. [online]. Available on internet: http: /www. odbornecasopisy. cz/res/pdf/38879. pdf.

Google Scholar

[6] D. Mudrončík, I. Zolotová: Priemyselné programovateľné regulátory, 2000, Elfa, s. r. o., Košice.

Google Scholar

[7] Norma STN EN ISO 13849-1: Bezpečnosť strojov. Bezpečnostné časti riadiacich systémov. Časť 1: Všeobecné zásady navrhovania, (2006).

Google Scholar

[8] K. Rastocny, J. Zdansky: Riadiace systemy so safety PLC". Zilinska univerzita v Ziline, EDIS-vydavatelstvo Zilinskej univerzity, 2013, ISBN 978-80-554-0681-7.

Google Scholar

[9] Standard IEC 61508-1: Functional safety of electrical/electronic/programmable electronic safety-related systems. Part 1: General requirements, (2010).

DOI: 10.3403/30383921u

Google Scholar

[10] D. J. Smith: Reliability, Maintainability and Risk. Practical methods for engineers. Eighth Edition, Published by Elsevier Ltd, 2011, p.435 ISBN 978-0-08-096902-2.

Google Scholar

[11] IEC-61508-6: Functional safety of electrical/electronic /programmable electronic safety-related systems. (2010).

DOI: 10.3403/03263848

Google Scholar