[1]
Y. Xu, X. Zhang, Y. Tian, C. Chen, Y. Nan, H. He, M. Wang, Study on the nucleation and growth of M23C6 carbides in a 10% Cr martensite ferritic steel after long-term aging, Materials Characterization, 111(2016) 122–127.
DOI: 10.1016/j.matchar.2015.11.023
Google Scholar
[2]
H. G. Armaki, R. Chen, S. Kano, K. Maruyama, Y. Hasegawa, M. Igarashi, Microstructural degradation mechanisms during creep in strength enhanced high Cr ferritic steels and their evaluation by hardness measurement, Journal of Nuclear Materials, 416 (2011).
DOI: 10.1016/j.jnucmat.2011.06.007
Google Scholar
[3]
J. Pesicka, A. Aghajani, Ch. Somsen, b A. Hartmaierc and G. Eggeler, How dislocation substructures evolve during long-term creep of a 12% Cr tempered martensitic ferritic steel, Scripta Materialia, 62 (2010) 353–356.
DOI: 10.1016/j.scriptamat.2009.10.037
Google Scholar
[4]
V. Thomas Paul, S. Saroja, M. Vijayalakshmi, Microstructural stability of modified 9Cr–1Mo steel during long term exposures at elevated temperatures, Journal of Nuclear Materials, 378 (2008) 273–281.
DOI: 10.1016/j.jnucmat.2008.06.033
Google Scholar
[5]
Ján Michel, Marián Buršák, Marek Vojtko, Microstrucutre and Mechanical Properties Degradation of CrMo Creep resistant Steel Operating under Creep Conditions, Materials Engineering - Materiálové inžinierstvo, 18 (2011) 57-62.
Google Scholar
[6]
G. Golanski, J. Slania, Effect of different heat treatments on microstructure and mechanical properties of the martensitic GX12CrMoVNbN9-1 cast steel, Archives of Metallurgy and Materials, 58, (2013) Issue 1, DOI: 10. 2478/v10172-012-0145-x.
DOI: 10.2478/v10172-012-0145-x
Google Scholar
[7]
G. Krauss, Heat Treatment and Processing Principles, 1990 Steels, ASM International, Materials Park, OH.
Google Scholar
[8]
C. H. Hsu, H. Y. Teng and S. C. Chiu, Ultrasonic Evaluation of Temper-Embrittlement for Martensitic Stainless Steel, Materials Transactions, 44, No. 11 (2003) 2363-2368.
DOI: 10.2320/matertrans.44.2363
Google Scholar
[9]
C. H. Hsu, H. Y. Teng, and Y. J. Chen, JMEPEG ASM International, 13 (2004) 593-599. DOI: 10. 1361/15477020420828.
Google Scholar
[10]
H. K. Danielsen, Ph.D. thesis, Department of Manufacturing Engineering and Management, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark, February (2007).
DOI: 10.24867/ijiem-2018-4-205
Google Scholar
[11]
H. K. Danielsen, Ph.D. thesis, Department of Manufacturing Engineering and Management, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark, February (2007).
DOI: 10.24867/ijiem-2018-4-205
Google Scholar
[12]
G. Golañski, Effect of the heat treatment on the structure and properties of GX12CrMoVNbN9-1 cast steel, Archives of Materials Science and Engineering, 46, Issue 2, 88-97, December (2010).
Google Scholar
[13]
D. R. Jara, Ph. D. Dissertation Thesis, Fakultaet fuer Maschinenbau der Ruhr Universitaet Bochum- Bochum (2011).
Google Scholar
[14]
M. Kimura, K. Yamaguchia, M. Hayakawa, K. Kobayashia, K. Kanazawa, Microstructures of creep-fatigued 9–12% Cr ferritic heat-resisting steels, International Journal of Fatigue 28 (2006) 300-308.
DOI: 10.1016/j.ijfatigue.2005.04.013
Google Scholar
[15]
K. Maruyama, K. Sawada and J. Koike, Strengthening Mechanisms of Creep Resistant Tempered Martensitic Steel, ISIJ International, 41, No. 6 (2001) 641-653.
DOI: 10.2355/isijinternational.41.641
Google Scholar