[1]
Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, et al., CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications, Progress in Materials Science, vol. 60, pp.208-337, (2014).
DOI: 10.1016/j.pmatsci.2013.09.003
Google Scholar
[2]
A.S. Zoolfakar, R.A. Rani, A.J. Morfa, A.P. O'Mullane, and K. Kalantar-zadeh, Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications, Journal of Materials Chemistry C, vol. 2, p.5247, (2014).
DOI: 10.1039/c4tc00345d
Google Scholar
[3]
A. Li, H. Song, W. Wan, J. Zhou, and X. Chen, Copper oxide nanowire arrays synthesized by in-situ thermal oxidation as an anode material for lithium-ion batteries, Electrochimica Acta, vol. 132, pp.42-48, (2014).
DOI: 10.1016/j.electacta.2014.03.123
Google Scholar
[4]
M. Yang and Q. Gao, Copper oxide and ordered mesoporous carbon composite with high performance using as anode material for lithium-ion battery, Microporous and Mesoporous Materials, vol. 143, pp.230-235, (2011).
DOI: 10.1016/j.micromeso.2011.03.001
Google Scholar
[5]
D. P. Dubal, G. S. Gund, R. Holze, and C. D. Lokhande, Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors, Journal of Power Sources, vol. 242, pp.687-698, (2013).
DOI: 10.1016/j.jpowsour.2013.05.013
Google Scholar
[6]
Y. Fan, P.F. Liu, and Z.J. Yang, CuO nanoparticles supported on carbon microspheres as electrode material for supercapacitors, Ionics, vol. 21, pp.185-190, (2014).
DOI: 10.1007/s11581-014-1158-4
Google Scholar
[7]
J. Huang, H. Wu, D. Cao, and G. Wang, Influence of Ag doped CuO nanosheet arrays on electrochemical behaviors for supercapacitors, Electrochimica Acta, vol. 75, pp.208-212, (2012).
DOI: 10.1016/j.electacta.2012.04.134
Google Scholar
[8]
S.E. Moosavifard, J. Shamsi, S. Fani, and S. Kadkhodazade, Facile synthesis of hierarchical CuO nanorod arrays on carbon nanofibers for high-performance supercapacitors, Ceramics International, vol. 40, pp.15973-15979, (2014).
DOI: 10.1016/j.ceramint.2014.07.126
Google Scholar
[9]
S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan, and K. Adibkia, Antimicrobial activity of metals and met-al oxide nanoparticles. Materials Science and Engineering C, 44: 278-284, (2014).
DOI: 10.1016/j.msec.2014.08.031
Google Scholar
[10]
A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, and A. Memic, Size-dependent antimicrobial properties of CuOna-noparticles against Gram-positive and -negative bacterial strains, International Journal of Nanomedicine, 7: 3527–3535, (2012).
DOI: 10.2147/ijn.s29020
Google Scholar
[11]
K. Mageshwari, and R. Sathyamoorthy, Flower-shaped CuO Nanostructures: Synthesis, Characterization and Anti-microbial Activity, Journal of Materials Science Technology, 29(10): 909-914, (2013).
DOI: 10.1016/j.jmst.2013.04.020
Google Scholar
[12]
C. Yang, F. Xiao, J. Wang, and X. Su, 3D flower- and 2D sheet-like CuO nanostructures: Microwave-assisted synthesis and application in gas sensors, Sensors and Actuators B 207 (2015) 177–185, (2014).
DOI: 10.1016/j.snb.2014.10.063
Google Scholar
[13]
N. Ekthammathat, T. Thongtem, and S. Thongtem, Anti-microbial activities of CuO films deposited on Cu foils by solution chemistry, Applied Surface Science, 277: 211-217, (2013).
DOI: 10.1016/j.apsusc.2013.04.027
Google Scholar
[14]
N.P.S. Acharyulu, R.S. Dubey, V. Swaminadham, R.L. Kalyani, P. Kollu and S.V.N. Pammi, Green Synthesis of CuO Nanoparticles using Phyllanthus Amarus Leaf Extract and theirAntibacterial Activity Against MultidrugResistance Bacteria, International Journal of Engineering Research & Technology, vol. 3, no. 4, (2014).
DOI: 10.1166/jbns.2014.1220
Google Scholar