Antibacterial Properties of Unique Urchin-Like CuO Nanostructures by Chemical Bath Deposition

Article Preview

Abstract:

Unique urchin-like CuO nanostructures were successfully synthesized by a simple chemical bath deposition method at low temperature of 70°C in a short reaction time of 1h. XRD pattern revealed the presence of pure crystalline monoclinic CuO. Morphological analysis revealed the formation of spherical structures composed of numerous hair-like structures arranged in an urchin-like fashion. A plausible growth mechanism was proposed in this paper. Antibacterial test revealed that the nanostructures successfully inhibited the growth of both S. aureus and E. coli.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

166-170

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, et al., CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications, Progress in Materials Science, vol. 60, pp.208-337, (2014).

DOI: 10.1016/j.pmatsci.2013.09.003

Google Scholar

[2] A.S. Zoolfakar, R.A. Rani, A.J. Morfa, A.P. O'Mullane, and K. Kalantar-zadeh, Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications, Journal of Materials Chemistry C, vol. 2, p.5247, (2014).

DOI: 10.1039/c4tc00345d

Google Scholar

[3] A. Li, H. Song, W. Wan, J. Zhou, and X. Chen, Copper oxide nanowire arrays synthesized by in-situ thermal oxidation as an anode material for lithium-ion batteries, Electrochimica Acta, vol. 132, pp.42-48, (2014).

DOI: 10.1016/j.electacta.2014.03.123

Google Scholar

[4] M. Yang and Q. Gao, Copper oxide and ordered mesoporous carbon composite with high performance using as anode material for lithium-ion battery, Microporous and Mesoporous Materials, vol. 143, pp.230-235, (2011).

DOI: 10.1016/j.micromeso.2011.03.001

Google Scholar

[5] D. P. Dubal, G. S. Gund, R. Holze, and C. D. Lokhande, Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors, Journal of Power Sources, vol. 242, pp.687-698, (2013).

DOI: 10.1016/j.jpowsour.2013.05.013

Google Scholar

[6] Y. Fan, P.F. Liu, and Z.J. Yang, CuO nanoparticles supported on carbon microspheres as electrode material for supercapacitors, Ionics, vol. 21, pp.185-190, (2014).

DOI: 10.1007/s11581-014-1158-4

Google Scholar

[7] J. Huang, H. Wu, D. Cao, and G. Wang, Influence of Ag doped CuO nanosheet arrays on electrochemical behaviors for supercapacitors, Electrochimica Acta, vol. 75, pp.208-212, (2012).

DOI: 10.1016/j.electacta.2012.04.134

Google Scholar

[8] S.E. Moosavifard, J. Shamsi, S. Fani, and S. Kadkhodazade, Facile synthesis of hierarchical CuO nanorod arrays on carbon nanofibers for high-performance supercapacitors, Ceramics International, vol. 40, pp.15973-15979, (2014).

DOI: 10.1016/j.ceramint.2014.07.126

Google Scholar

[9] S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan, and K. Adibkia, Antimicrobial activity of metals and met-al oxide nanoparticles. Materials Science and Engineering C, 44: 278-284, (2014).

DOI: 10.1016/j.msec.2014.08.031

Google Scholar

[10] A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, and A. Memic, Size-dependent antimicrobial properties of CuOna-noparticles against Gram-positive and -negative bacterial strains, International Journal of Nanomedicine, 7: 3527–3535, (2012).

DOI: 10.2147/ijn.s29020

Google Scholar

[11] K. Mageshwari, and R. Sathyamoorthy, Flower-shaped CuO Nanostructures: Synthesis, Characterization and Anti-microbial Activity, Journal of Materials Science Technology, 29(10): 909-914, (2013).

DOI: 10.1016/j.jmst.2013.04.020

Google Scholar

[12] C. Yang, F. Xiao, J. Wang, and X. Su, 3D flower- and 2D sheet-like CuO nanostructures: Microwave-assisted synthesis and application in gas sensors, Sensors and Actuators B 207 (2015) 177–185, (2014).

DOI: 10.1016/j.snb.2014.10.063

Google Scholar

[13] N. Ekthammathat, T. Thongtem, and S. Thongtem, Anti-microbial activities of CuO films deposited on Cu foils by solution chemistry, Applied Surface Science, 277: 211-217, (2013).

DOI: 10.1016/j.apsusc.2013.04.027

Google Scholar

[14] N.P.S. Acharyulu, R.S. Dubey, V. Swaminadham, R.L. Kalyani, P. Kollu and S.V.N. Pammi, Green Synthesis of CuO Nanoparticles using Phyllanthus Amarus Leaf Extract and theirAntibacterial Activity Against MultidrugResistance Bacteria, International Journal of Engineering Research & Technology, vol. 3, no. 4, (2014).

DOI: 10.1166/jbns.2014.1220

Google Scholar