Characterization of Epoxy Matrix Reinforced with Banana Fibers Thermal Properties by Photoacoustic Technique

Article Preview

Abstract:

Synthetic fibers are being replaced gradually by natural materials such as lignocellulosic fibers. Compared to synthetic fibers, natural fibers have shown advantages in environmental, societal, economical and technical aspects. Thus, there is a growing worldwide interest in the use of those fibers. The banana fiber, extracted from the pseudo-stem of the plant, displays significant properties yet to be studied. Few thermal properties on banana fiber as reinforcement of epoxy matrix were fully evaluated. Therefore, the present work had as its objective to investigate, by photoacoustic spectroscopy and photothermal techniques the thermal diffusivity, specific heat capacity and thermal conductivity of epoxy composites reinforced with banana fibers .The epoxy matrix was added with up to 30% in volume of continuous and aligned banana fibers. The results indicated that these composites have good insulation capacity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

331-337

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Gore, An Inconvenient Truth. The Planetary Emergency of Global Warming and What We Can Do About It. Rodale Press, Emmaus, USA, (2006).

DOI: 10.22621/cfn.v120i4.378

Google Scholar

[2] P. Wambua, I. Ivens and I. Verpoest, Natural fibers: can they replace glass and fiber reinforced plastic? Composites Science and Technology, 63 (2003) 1259-1264.

DOI: 10.1016/s0266-3538(03)00096-4

Google Scholar

[3] S.V. Joshi, L.T. Drzal, A.K. Mohanty and S. Arora, Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A 35 (2004) 371-376.

DOI: 10.1016/j.compositesa.2003.09.016

Google Scholar

[4] A.K. Mohanty, M. Misra and G. Hinrichsen: Macromol. Mat. Eng. Vols. 276/277 (2000), p.1.

Google Scholar

[5] T. Peijs: Mater. Technol. Vol. 15 (2000), p.281.

Google Scholar

[6] A.K. Mohanty M. Misra and L.T. Drzal: J Polym. Environ. Vol. 10 (2002), p.19.

Google Scholar

[7] A.N. Netravali and S. Chabba: Mater. Today Vol. 6 (2003), p.22.

Google Scholar

[8] G. Bogoeva-Gaceva, M. Avella, M. Malinconico, A. Buzarovska, A. Grozdanov, G. Gentile and M.E. Errico: Polymer Composites Vol. 28 (2007), p.98.

DOI: 10.1002/pc.20270

Google Scholar

[9] J. Crocker, Natural materials innovative natural composites. Mater. Technol. 2-3 (2008) 174–178.

Google Scholar

[10] M.J. John and S. Thomas: Carbohydr. Polym. Vol. 71 (2008), p.343.

Google Scholar

[11] K.G. Satyanarayana, G.C. Arizaga and F. Wypych: Progr. Polym. Sci. Vol. 34 (2009), p.982.

Google Scholar

[12] S. N Monteiro, F.P.D. Lopes, A.S. Ferreira and D.C. O Nascimento: JOM Vol. 61 (2009), p.17.

Google Scholar

[13] S.N. Monteiro, F.P.D. Lopes, A.P. Barbosa, A. B. Bevitori, I. L Silva and L. L Costa: Metal. Mater. Trans. A Vol. 42 (2011), p.2963.

Google Scholar

[14] O. Faruk, A.K. Bledzki, H. -P. Fink and M. Sain: Progress in Polymer Science Vol. 37 (2012), p.1552.

Google Scholar

[15] V.K. Thakur, M.K. Thakur and R.K. Gupta: Intl. J. Polym Analys. Charact. Vol. 19 (2014), p.256.

Google Scholar

[16] G. Marsh: Today Vol. 6 (4) (2003), p.36.

Google Scholar

[17] J. Holbery and D. Houston: JOM Vol. 58 (2006), p.80.

Google Scholar

[18] A.K. Bledzki, O. Faruk and V.E. Sperber: Macromol. Mater. Eng. Vol. 291 (2006), p.449.

Google Scholar

[19] R. Zah, R. Hischier, A.L. Leão and I. Brown: J. Cleaner Production Vol. 15 (2007), p.1032.

Google Scholar

[20] N. Thomas, S.A. Paul, L.A. Pothan and B. Deepa, Natural fibers: structure, properties and applications. In: Kalia, S.; Kaith, B. S.; Kaur, I. (Eds. ), Cellulose Fibers: Bio- and Nano-Polymer Composites, Springer - Verlag: Berlin - Heidelberg, Germany, 2011; pp.3-42.

DOI: 10.1007/978-3-642-17370-7_1

Google Scholar

[21] S.A. Paul, A. Boudenne, L. Ibos, Y. Candau, K. Joseph and S. Thomas: Compos Part A Vol. 39 (2008), p.1582.

Google Scholar

[22] E.S. Zainudim, S.M. Sapuan, K. Abdan and M.T.M. Mohamad: Materials & Design Vol. 30 (2009), p.557.

Google Scholar

[23] L.L. Costa, S.N. Monteiro, T.G.R. Portela and N.S.S. Santos: Annual Meeting & Exhibition Conference: Characterization of Minerals, Metals, and Materials (TMS). Seattle 14 to 18 February 2010. Proceeding… Seattle 2010. Washington (USA).

Google Scholar

[24] J.L. Guimarães, F. Wypych, C.K. Saul, L.P. Ramos and K.G. Satyanarayana: Carbohydr Polym. Vol. 80 (2010), p.130.

Google Scholar

[25] M.M. Ibrahim, A. Dusfrene, W.K. El-Zawawy and F.A. Agblevor: Carbohydr Polym. Vol. 81 (2010), p.811.

Google Scholar

[26] F.M. Margem, S.N. Monteiro, L.B.S. Martins, R.L. Loiola and V. Calado: 67º Congresso Internacional da Associação Brasileira de Metalurgia, Materiais e Mineração (ABM). Rio de Janeiro 31de Julho - 03 de Agosto 2012. Proceeding.. Rio de Janeiro 2012. (RJ).

DOI: 10.22239/2317-269x.01977

Google Scholar

[27] F.M. Margem, S.N. Monteiro, L.B.S. Martins and R.J.S. Rodriguez: Materials (TMS). Orlando 11 to 15 March 2012. Proceeding… Orlando 2012. Florida (USA).

Google Scholar

[28] F.M. Margem, L.B.S. Martins, N.C.G. Rosa and S.N. Monteiro, Thermal behavior of banana fibers. In: Characterization of Minerals, Metals & Materials 2012, Hoboken NJ USA: pub. John Wiley & Sons; 2012. pp.381-386.

DOI: 10.1002/9781118371305.ch45

Google Scholar

[29] S.N. Monteiro, F.M. Margem, F.S. Assis, R.L. Loiola and J.I. Margem, Flexural mechanical characterization of polyester composites reinforced with continuous banana fibers. In: Characterization of Minerals, Metals & Materials 2013, Hoboken NJ USA: pub. John Wiley & Sons; 2013. pp.175-179.

DOI: 10.1002/9781118659045.ch20

Google Scholar

[30] S.N. Monteiro, F.M. Margem, R.L. Loiola, F.S. Assis and M.P. Oliveira: Mater Sci Forum Vols. 775-776 (2014), p.250.

Google Scholar

[31] F.S. Assis, S.N. Monteiro, F.M. Margem and R.L. Loiola, Charpy toughness behavior of continuous banana fiber reinforced epoxy matrix composites. In: Characterization of Minerals, Metals & Materials 2014, Hoboken NJ USA: pub. John Wiley & Sons; 2014. pp.499-506.

DOI: 10.1002/9781118888056.ch58

Google Scholar

[32] S.N. Monteiro, F.M. Margem, F.S. Assis, R.L. Loiola and M.P. Oliveira: Mater Sci Forum. Vols. 775-776 (2014), p.261.

Google Scholar

[33] H. Vargas and L.C.M. Miranda: Phys. Rep. Vol. 161 (1988), p.43.

Google Scholar

[34] A. Rosencwaig and A. Gersho: J. Appl. Physics Vol. 47 (1976), p.64.

Google Scholar

[35] D. Almond and P. Patel: Photoacoustic and Photothermal Science and Techniques. (Chapman and Hall, London 1996).

Google Scholar

[36] I. Hatta: Rev. Sci. Instrum. Vol. 50 (1979), p.292.

Google Scholar