Synthesis, Characterization and Photoluminescent Properties of ZrO2 Nanocrystals

Article Preview

Abstract:

Nanocrystalline zirconium oxide (ZrO2) was synhesized by hydrothermal method in presence of hydrogen peroxide. Surface morphology analysis depicts the formation of the nanorods. The structural analysis confirms that the as-synthesized ZrO2 product is of pure monoclinic phase (m-ZrO2) with crystallite size of about ~8 nm. The product consists of monodispersed nanoparticles of uniform composition, high purity, and crystallinity. The Raman spectra are quantitatively analyzed and the observed peaks are attributed to various vibration modes of the m-ZrO2. Photoluminescence (PL) spectrum of ZrO2 nanostructure showed a strong and broad emission peak at around 534 nm, which can be attributed the participation of several energy levels.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-39

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.J. Liu, R.O.J. Claus:J. Am. Chem. Soc. Vol. 119 (1997), p.5273.

Google Scholar

[2] K. Vanheusden, W. L Warren, C. H Seaeger, D. R Jallant, J.A. Voigt, B.E. Gnade: J. Appl. Phys. Vol. 79 (1996), p.7983.

Google Scholar

[3] J. Liang, Z. Deng, X. Jiang, F. Li, Y. Li: Inorganic Chem. Commu. Vol. 41 (2002), p.3602.

Google Scholar

[4] A.V. Emeline and N. Serpone: Chem. Phys. Lett. Vol. 345 (2001), p.105.

Google Scholar

[5] C. Lin, C. Zhang, d J. Lin: J. Phys. Chem. C Vol. 111 (2007), p.3300.

Google Scholar

[6] S. Shukla, S. Seal, R. Vij, S. Bandyopadhyay: Nano. Lett. Vol. 3 (2003), p.397.

Google Scholar

[7] R.H. French, S.J. Glass, F.S. Ohuchi, Y. -N. Xu, W.Y. Ching: Phys. Rev. B Vol. 49 (1994), p.5133.

Google Scholar

[8] A. Emeline, G.V. Kataeva, A.S. Litke, A.V. Rudakova, V.K. Ryabchuk, N. Serpone: Langmuir Vol. 14 (1998), p.5011.

DOI: 10.1021/la980083l

Google Scholar

[9] C.H. Lu, H.C. Hong, R.J. Jagannathan: J. Mater. Chem. Vol. 12 (2002), p.2525.

Google Scholar

[10] G. Blasse, B.C. Grabmaier: Luminescent Materials. (Springer, Heidelberg 1994).

Google Scholar

[11] K. Latha, W. Z. Li: Cryst. Growth Vol. 9 (2009), p.3874.

Google Scholar

[12] M.Z.C. Hu, M.T. Harris, C.H. Byers: J. Colloid and Interf. Sci. Vol. 198 (1998), p.87.

Google Scholar

[13] D.K. Smith, W. Newkirk: Acta. Cryst. Vol. 18 (1965), p.983.

Google Scholar

[14] M. Bhagwat, V. Ramaswamy: Mater. Res. Bull. Vol. 39 (2004), p.1627.

Google Scholar

[15] V. Petkov: Mater. Today Vol. 11 (2008), p.28.

Google Scholar

[16] J. Li, L. Hui, Y. Jian, S. Wenfeng: Univ. Technol. Mater. Sci. Vol. 25 (2010), p.919.

Google Scholar

[17] X. Zhao, D. Vanderbilt: Phys. Rev. B Vol. 65 (2002), p.075105.

Google Scholar

[18] R.D. Purohit, S. A Saha, K. Tyagi: Mater. Sci. Eng B. Vol. 130 (2006), p.57.

Google Scholar

[19] M.Z.C. Hu, M.T. Harris, C.H. Byers: J. Colloid. Interface Sci. Vol. 198 (1998), p.87.

Google Scholar

[20] M. Yashima, S. Tsunekawa: Acta Cryst. B. Vol. 62 (2006), p.161.

Google Scholar

[21] A.K. Singh1 and U.T. Nakate: The Scientific World Journal ID 349457 (2014), p.1.

Google Scholar