Obtaining of Ceramic Sensor Devices for Soil Humidity Measurements in Different Climatic Conditions

Article Preview

Abstract:

Presently, there is a lack of effectiveness in the manufacturing of sensors and sensing systems, with Brazilian technologies and raw-materials, able to measure soil water content, with efficiency and practicality. On account of this, ceramics is selected as sensing elements for this application, based on relevant results obtained by researchers from the TECAMB Group of INPE, along the last 15 years. In this way, the present work tries to bring together the technologies of manufacturing, characterization and development of porous ceramics and the monitoring of soil water content in typical Brazil soils, for several applications, such as irrigation, drainage, building and environmental monitoring as well. And so, in order to improve the sensing capacity of these ceramic devices, electrical measurements were performed in different climatic conditions of controlled relative humidity and room temperature. The scanning electron microscopy technique was applied for the morphological analysis of the sintered ceramic microstructure. Results evidenced that the ceramic devices presented a very promising response to the water molecules contained in soil samples selected for tests, under established climatic conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

40-45

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.C. Rebouças et al. Águas Doces no Brasil: Capital Ecológico, uso e Conservação. (Escrituras Editora 3a ed. São Paulo, 2006).

Google Scholar

[2] Brasil. ANA - Agência Nacional de Águas. Conjuntura dos recursos hídricos no Brasil. Brasília: 2009, 204p.

Google Scholar

[3] C.S.E. Carvalho, T. Galvão: Prevenção de Riscos de Deslizamentos em Encostas: Guia para Elaboração de Políticas Municipais. Ministério das Cidades 1ª Edição. Alliance Brasília, (2006).

Google Scholar

[4] R.U. Cooke, J.C. Doornkamp: Geomorphology in Environmental Management. (Clarendon Press1st Ed. Oxford, 1990).

Google Scholar

[5] I. Karmann: Ciclo da Água: Água Subterrânea e sua Ação Geológica. In: Teixeira, W.; Toledo, M. C. M.; Fairchild, T. R.; Taioli, F. (org. ). Decifrando a Terra. 2ª Reimpressão. São Paulo: Oficina de Textos, 2003. 557p. ISBN 85-86238-14-7.

Google Scholar

[6] R.M. Oliveira: Desenvolvimento de elementos sensores de cerâmicas porosas de ZrO2-TiO2 para aplicação no monitoramento do conteúdo de água em solos Doutorado (Tese). São José dos Campos, 2010. Instituto Nacional de Pesquisas Espaciais (INPE). (SP).

DOI: 10.18605/2175-7275/cereus.v10n2p193-210

Google Scholar

[7] Equipamentos Agrícolas. Nugon, Publicações e Representações Publicitárias, Ltda. Disponível em: <http: /www. abolsamia. pt/artigos/media/1395/image_gallery/2. jpg>. Acesso em 14 de janeiro de (2010).

Google Scholar

[8] K. Noborio: Computers and Electronics in Agriculture Vol. 31 (11) (2001), p.213.

Google Scholar

[9] H. Fellner-Feldegg: J. Phys. Chem. Vol. 73 (3) (1969), p.616.

Google Scholar

[10] P.L. Libardi: Dinâmica da Água no Solo. (Editora da Universidade 1ª Edição São Paulo, 2005). ISBN 85-314-0756-7.

Google Scholar

[11] E. Traversa: Sensors and Actuators B Vol. 23 (1995), p.135.

Google Scholar