Thermal Characterization of Neodymium-Barium-Copper Ceramic (NBCo Ceramic) Synthesized from Barium Carbonate

Article Preview

Abstract:

This work presents a study about thermal properties of a ceramic material based on NdBaCu system sintered with barium carbonate. These specialized ceramics are manufactured under special conditions and due to its unique electrical and thermal properties are frequently used by the electronic industry. Ceramics containing neodymium-barium-copper (NdBaCu) exhibit high conductivity at low temperatures. In this work, the ceramic samples were sintered with different percentage of barium carbonate, cupric and neodymium oxide and were characterized with Termogravimetric Analysis (TGA), Differential Scanning Calorimetric (DSC), Thermal Dilatometric Analysis (TDA) and X-Ray Diffraction Analysis (DRX). The results showed that the electrical conductivity of NdBaCu system is dependent on the calcination temperature. In turn, the complete calcination is dependent on the barium percentage and the thermal treatment conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

74-78

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Soh, Z. Fan: Physica C Vol. 337 (2002), p.292. DOI: 10. 1016/S0921-4534(00)00120-9.

Google Scholar

[2] S.A. Silva: Processamento e Caracterização de Amostras Supercondutoras Utilizando o Concentrado de Xenotima. Mestrado (Dissertação). Ponta Grossa, 2007. Universidade Estadual de Ponta Grossa (UEPG). (PR).

DOI: 10.5212/terraplural.v.15.2119754.036

Google Scholar

[3] R.P. GUPTA et al.: Sensors and Actuators B Vol. 56 (1999), p.65. DOI: 10. 1016/S0925-4005(99)00072-6.

Google Scholar

[4] S. Kudo et al: Sensors and Actuators B Vol. 23 (1995), p.219. DOI: 10. 1016/0925-4005(94)01282-M.

Google Scholar

[5] J.W. Fergus: Sensors and Actuators B Vol. 123 (2007), p.1169. DOI: 10. 1016/j. snb. 2006. 10. 051.

Google Scholar

[6] K. Mizuno et al. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev. Physica C: Superconductivity, 2014. DOI: 10. 1016/j. physc. 2014. 06. 009.

DOI: 10.1016/j.physc.2014.06.009

Google Scholar

[7] O. Maruyama et al.: Physics Procedia Vol. 36 (2012), p.1153. DOI: 10. 1016/j. phpro. 2012. 06. 193.

Google Scholar

[8] J. Valo, M. Leskelӓ: Handbook of Thermal Analysis and Calorimetry. Vol. 2: Applications to Inorganic and Miscellaneous Materials Vol. 15 (2003), pp.817-879.

DOI: 10.1016/s1573-4374(03)80019-5

Google Scholar

[9] Matecki, A. et al.: Materials Research Bulletin Vol. 30 (6) (1995), p. 73l. DOI: 10. 1016/0025-5408(95)00050-X.

Google Scholar

[10] D. Noël, L. Parent: Thermochimica Acta Vol. 147 (1989), p.109. DOI: 10. 1016/0040-6031(89)85167-6.

Google Scholar

[11] M. Haruta et al.: Physics Procedia, 36 (2012) 1576 – 1581. DOI: 10. 1016/j. phpro. 2012. 06. 213.

Google Scholar

[12] L.C. Pathak et al.: Materials Science and Engineering B Vol. 110 (2004), p.119. DOI: 10. 1016/j. mseb. 2003. 11. 015.

Google Scholar

[13] Fernandes et al.: Journal of Alloys and Compounds Vol. 649 (2015), p.809. DOI: 10. 1016/j. jallcom. 2015. 06. 261.

Google Scholar

[14] Y. Matsuoka, E. Ban, H. Kondo: Materials Letters Vol. 56 (2002), p.329.

Google Scholar

[15] K.I. Othman et al.: Arab Journal of Nuclear Science and Applications Vol. 45(4) (2012), p.335.

Google Scholar

[16] C. Caldart et al.: Materials Science Forum Vols. 727-728 (2012), p.499. DOI: 10. 4028/www. scientific. net/MSF. 727-728. 499.

Google Scholar

[17] S.I. Yoo, R.W. Mccallum: Physica C: Superconductivity Vol. 210 (1/2) (1993), p.147. DOI: 10. 1016/0921-4534(93)90019-M.

Google Scholar