Surface Modification of the Alloy Ti-7.5Mo by Anodization for Biomedical Applications

Article Preview

Abstract:

The purpose of this study was to evaluate the TiO2 nanotubes growth and the variation in its diameter to improve the surface properties of Ti-7.5Mo to use for biomedical applications. For the nanotubes TiO2 growth, the samples were anodized in glycerol and ammonium fluoride and divided according to the anodizing potential at 5V to 10V and 24 hour time. The surfaces were examined by scanning electron microscope (SEM), X-ray analysis (XRD) and contact angle measurements. The average tube diameter, ranging in size from 13 to 23 nm, was found to increase with increasing anodizing voltage. It was also observed a decrease in contact angle in accordance with the increase in the anodizing potential. The X-ray analysis showed the presence of anatase phase in samples whose potential was 10V and this condition represents a simple surface treatment for Ti-7.5Mo alloy that has high potential for biomedical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

913-917

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Choi, R.B. Wehrspohn, J. Lee, U. Gosele: Electrochimica Acta Vol. 49 (2004), p.2645.

Google Scholar

[2] Y.T. Sul, C. Johansson, A. Wennerberg, L.R. Cho, B.S. Chang, T. Albrektsson: Int J Oral Maxillofac Implants Vol. 20 (2005), p.349.

Google Scholar

[3] N. Sykaras, A.M. Iacopino, V.A. Marker, R.G. Triplett, R.D. Woody: Int. J. Oral Maxillofac. Implants Vol. 15 (2000), p.675.

Google Scholar

[4] M.E. Barbour, D.J. O'Sullivan, H.F. Jenkinson, D.C. Jagger: J. Mater. Sci. Mater. Med. Vol. 18 (2007), p.1439.

Google Scholar

[5] S. Szmukler-Moncler, D. Perrin, V. Ahossi, G. Magnin, J.P. Bernard: J. Biomed. Mater. Res. B Appl. Biomater. Vol. 68 (2004), p.149.

DOI: 10.1002/jbm.b.20003

Google Scholar

[6] S. Nishiguchi, S. Fujibayashi, H.M. Kim, T. Kokubo, T. Nakamura: J. Biomed. Mater. Res. A. Vol. 67 (2003), p.26.

Google Scholar

[7] K.H. Park, S.J. Heo, J.Y. Koak, S.K. Kim, J.B. Lee, S.H. Kim, Y. J Lim: J. Oral Rehabil. Vol. 34 (2007), p.517.

Google Scholar

[8] H. Liu, T. J Webster: Biomaterials Vol. 28 (2007), p.354.

Google Scholar

[9] Y.T. Sul: Biomaterials Vol. 24 (2003), p.3893.

Google Scholar

[10] A.S. Karakoti, R. Filmalter, D. Bera, S.V. Kuchibhatla, A. Vincent, S. Seal: J. Nanosci. Nanotechnol. Vol. 6 (2006), p. (2084).

Google Scholar

[11] J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki: Curr. Opin. Solid State Mater. Sci Vol. 11 (2007), p.3.

Google Scholar

[12] J. M Macak, H. Tsuchiya, P. Schmuki: Angew Chem. Int Ed. Engl. Vol. 44 (2005), p.2100.

Google Scholar

[13] B. Sebastian, K. Sebastian, S. Patrik: Electrochemistry Communications Vol. 8 (2006), p.1321.

Google Scholar

[14] J. Park, S. Bauer, von der MK, P. Schmuki: Nano Lett. Vol. 7 (2007), p.1686.

Google Scholar

[15] Z. Lockman, S. Sreekantan, S. Ismail, L. Schmidt-Mende, J.L. MacManus-Driscoll: Journal of Alloys and Compounds Vol. 503 (2010), p.359.

DOI: 10.1016/j.jallcom.2009.12.093

Google Scholar

[16] J.M. Macak, H. Hildebrand, U. Marten-Jahns, P. Schmuki: Journal of Electroanalytical Chemistry Vol. 621 (2008), p.254.

DOI: 10.1016/j.jelechem.2008.01.005

Google Scholar

[17] Y. Wei-qiang, J. Xing-quan, Z. Fu-qiang, X. Ling: Journal of Biomedical Materials Research Part A Vol. 94 (2010), p.1012.

Google Scholar

[18] J.H. Choee, S.J. Lee, Y.M. Lee, J.M. Rhee, H.B. Lee, G. Khang: J Appl Polym Sci. Vol. 92 (2004), p.599.

Google Scholar

[19] N. Faucheux, R. Schweiss, K. Lutzow, C. Werner, T. Groth: Biomaterials Vol. 25 (2004), p.2721.

Google Scholar

[20] G. Zhao, Z. Schwartz, M. Wieland, F. Rupp, J. Geis-Gerstorfer, D.L. Cochran, B.D. Boyan: J Biomed Mater Res A. Vol. 74 (2005), p.49.

DOI: 10.1002/jbm.a.30320

Google Scholar