Hydroxyapatites Obtained from Different Routes and their Antimicrobial Properties

Article Preview

Abstract:

Among applications of ceramics in technological context, hydroxyapatite (HAp) stands out in the scientific community due to chemical biocompatibility and molecular similarity with the structures of bone and dental tissues. Such features are in addition to its antimicrobial properties. This work aimed firstly to synthesize hydroxyapatite by two different routes: hydrothermal (HD HAp) and co-precipitation (CP HAp), and secondly to verify the antimicrobial properties of these materials through direct contact tests against Staphylococcus aureus (SA10) and Escherichia coli (EC7) bacteria. These materials were characterized by XRD, Raman, and TEM. Antimicrobial tests showed inhibitory efficacy of 97.0% and 9.5% of CP HAp for SA10 and EC7, respectively. The HD HAp showed inhibitory effect of 95.0% and 0.0% for SA10 and EC7, respectively. The inhibitory effect of the tested materials against Staphylococcus aureus may be related to the HAp hydrophilicity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

890-895

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.E. Kawachi, C.A. Bertran, R.R. Reis, O.L. Alves: Quím. Nova Vol. 23 (2000), p.518.

Google Scholar

[2] Y. Matsuura, A. Onda, S. Ogo, K. Yanagisawa: Catal. Today Vol. 226 (2014), p.192.

Google Scholar

[3] E.C.F. Leonel, P.D. Mangilli, LT.O. Ramalho, J. Andrade Sobrinho: Cienc. Odontol. Bras. Vol. 6 (2013), p.19.

Google Scholar

[4] P.C. Moraes, J.G. Padilha Filho, J.C. Canola, L.A. Santos, D.G. Macoris, A.C. Alessi, M.B. Castro, F.A. Dória Neto: Acta Cir. Bras. Vol. 19 (2004), p.351.

DOI: 10.1590/s0102-86502004000400006

Google Scholar

[5] N. Rameshbabu, T.S. Sampath Kumar, T.G. Prabhakar, V.S. Sastry, K.V.G.K. Murty, K.P. Rao: J. Biomed. Mater. Res. A Vol. 80 (2006), p.581.

Google Scholar

[6] E.C.S. Rigo, S.A. Gehrke, M. Carbonari: Rev. Dental Press Period. Implant. Vol. 1 (2007), p.39.

Google Scholar

[7] Y.L. Zheng, F.L. Zhu: Carbohyd. Polym. Vol. 54 (2003), p.527.

Google Scholar

[8] S. Shanmugan, B. Gopal: Applied Surface Sci. Vol. 303 (2014), p.277.

Google Scholar

[9] K.P. Tank, K.S. Chudasama, V.S., Thaker, M.J. Joshi: J. Crys, Growth Vol. 401 (2014), p.474.

Google Scholar

[10] J. Yu, X. Chu, Y. Cai, P. Tong, J. Yao: Mat. Sci. Eng C Vol. 37 (2014), p.54.

Google Scholar

[11] J.C. Elliot: Structure and Chemistry of the Apatites and Other Calcium Orthophosphates. Elsevier, (1994).

Google Scholar

[12] O.G. Silva, E.C. Silva Filho, M.G. Fonseca, L.N.H. Arakaki, C. Airoldi: J. Colloid Interface Sci. Vol. 302 (2006), p.485.

Google Scholar

[13] M.D. Morris, G.S. Mandair: Clin. Orthop. Rel. Res. Vol. 469 (2011), p.2160.

Google Scholar

[14] H. Nikaido: Microbiol. Mol. Biol. Ver. Vol. 67 (2003), p.593.

Google Scholar

[15] E.A. Araujo, N.J. Andrade, A.F. Carvalho, A.M. Ramos, C.A.S. Silva, L.H.M. Silva: Quím. Nova Vol. 33 (2010), p. (1940).

Google Scholar