Antibacterial Activity of a Chitosan Derivative Obtained in the Absence of a Solvent

Article Preview

Abstract:

A novel chitosan derivative was prepared through direct reaction of pure chitosan with acetylacetone in the absence of a solvent, and it was characterized by elemental analysis, Fourier transform infrared spectrometry (FTIR), and 13C Nuclear Magnetic Ressonance (NMR) spectroscopy. Moreover, the antibacterial properties of the new biomaterial were tested by the direct contact method against multi-drug resistant strains of Staphylococcus aureus and Escherichia coli. The results from the characterization were consistent with the modification of the chemical structure made. The new derivative showed a better antibacterial activity than raw chitosan against E. coli strains, indicating that incorporation of imine link (Schiff base) enhanced its antibacterial activity against Gram-negative bacterium. On the contrary, this chemical change did not decrease its antibacterial activity against Gram-positive bacterium.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

869-873

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Zhang, C. Ruan, S. Dou, X. Tu, Y. Ma, Y. Wang: Mater. Lett. Vol. 93 (2013), p.282.

Google Scholar

[2] A. Muñoz-Bonilla, M. Fernández-García: Prog. Polym. Sci. Vol. 37 (2012), p.281.

Google Scholar

[3] J. Berger, M. Reist, M. J. Mayer, O. Felt, A.N. Peppas, R. Gurny: Eur. J. Pharm. Biopharm. Vol. 57 (2004), p.19.

Google Scholar

[4] G. Crini, F. Gimbert, C. Robert, B. Martel, O. Adam, N. Morin-Crini, F. Giorgi, M.P. Badot: J. Hazard. Mater. Vol. 153 (2008), p.96.

DOI: 10.1016/j.jhazmat.2007.08.025

Google Scholar

[5] M. Rinaudo: Prog. Polym. Sci. Vol. 31 (2006), p.603.

Google Scholar

[6] M. Kong, X. G, Chen, K. Xing, H.J. Park: Int. J. Food Microbiol. Vol. 144 (2010), p.51.

Google Scholar

[7] I.S. Lima, C. Airoldi: Thermochim. Acta Vol. 421 (2004), p.133.

Google Scholar

[8] K.C. Gavilan, A.V. Pestov, H.M. Garcia, Y. Yatluk, J. Roussy, E. Guibal, E. Mercury: J. Hazard. Mater. Vol. 165 (2009), p.415.

DOI: 10.1016/j.jhazmat.2008.10.005

Google Scholar

[9] Z.K. Elwakeel, A.A. Atia, M.A. Donia: Hydrometallurgy Vol. 97 (2009), p.21.

Google Scholar

[10] E.C. Silva Filho, P.D.R. Monteiro, K.S. Sousa, C. Airoldi: J. Thermal Anal. Calorim. Vol. 106 (2011), p.369.

Google Scholar

[11] K.S. Sousa, E.C. Silva Filho, C. Airoldi: Carbohyd. Res. Vol. 344 (2009), p.1716.

Google Scholar

[12] K.A.A. Pereira, L.R. Osório, M.P. Silva, K.S. Sousa, E.C. Silva Filho: Mater. Res. Vol. 17 (1) (2014), p.141.

Google Scholar

[13] E.C.N. Lopes, K.S. Sousa, C. Airoldi: Thermochim. Acta Vol. 483 (2009), p.21.

Google Scholar

[14] A. Ramesh, H. Hasegawa, W. Sugimoto, T. Maki, K. Ueda: Biores. Technol. Vol. 99 (2008), p.3801.

Google Scholar

[15] M. Dehonor-Gómez, M. Hernández-Esparza, F.A. Ruiz-Treviño, R. Contreras-Reyes: Macromol. Symp. Vol. 197 (2003), p.277.

DOI: 10.1002/masy.200350725

Google Scholar

[16] Y.L. Zheng, F.J. Zhu: Carbohyd. Polym. Vol. 54 (2003), p.527.

Google Scholar

[17] J. Kumirska, M.X. Weinhold, J. Thöming, P. Stepnowski: Polymers Vol. 3 (2011), p.1875.

Google Scholar