[1]
M. Geetha, A.K. Singh, R. Asokamani and A.K. Gogia: Progress in Materials Science Vol. 54 (2009), p.397.
Google Scholar
[2]
Y. Li, C. Yang, H. Zhao, S. Qu, X. Li and Y. Li: Materials Vol. 7 (2014), p.1709.
Google Scholar
[3]
E.W. Collings: The Physical Metallurgy of Titanium Alloys. (ASM International. Ohio, 1989).
Google Scholar
[4]
R. Boyer, G. Welsch and E.W. Collings. Materials Properties Handbook: Titanium Alloys. (ASM International, Materials Park, 1994).
Google Scholar
[5]
S. Ankem and C.A. Greene: Materials Science and Engineering A Vol. 263 (1999), p.127.
Google Scholar
[6]
P. Manda, U. Chakkingal and A. K. Singh: Materials Characterization Vol. 96 (2014), p.151.
Google Scholar
[7]
D. Banerjee and J.C. Williams: Acta Materialia Vol. 61 (2013), p.844.
Google Scholar
[8]
Y. Li, C. Wong, J. Xiong, P. Hodgson and C. Wen: Journal of Dental Research Vol. 89 (2010), p.493.
Google Scholar
[9]
D.M. Brunette, P. Tengvall, M. Textor and P. Thomsen: Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications., (Springer-Verlag, Berlim, 2001).
DOI: 10.1007/978-3-642-56486-4
Google Scholar
[10]
ICSD, Inorganic Crystal Structure Database, http: /icsd. ill. eu/icsd/index. php, (2014).
Google Scholar
[11]
ASTM, F 2066-08, Standard specification for wrought titanium-15 molybdenum alloy for surgical implant application, (2008).
Google Scholar
[12]
ASTM, F1813-13, Standard Specification for Wrought Titanium–12 Molybdenum–6 Zirconium–2 Iron Alloy for Surgical Implant (UNS R58120), (2013).
DOI: 10.1520/f1813-13
Google Scholar
[13]
D. Lide: CRC Handbook of Chemistry and Physics: a Ready-Reference Book of Chemical and Physical Data. (85th, CRC Press, Boca Raton USA, 2004).
DOI: 10.1021/ja041017a
Google Scholar
[14]
ASTM, F67-13, Standard Specification for Unalloyed Titanium, for Surgical Implant Applications (UNS R50250, UNS R50400, UNS R50550, UNS R50700), (2013).
DOI: 10.1520/f0067
Google Scholar
[15]
ASTM, F136-13, Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401), , (2013).
DOI: 10.1520/f0136-13r21e01
Google Scholar
[16]
T.S. Hin: Engineering Materials for Biomedical Applications World Scientific. (Singapore, 2004).
Google Scholar
[17]
P.J. Bania: Beta Titanium Alloys and Their Role in the Titanium Industry. (The Mineral, Metals & Materials Society, Warrendale, 1993).
Google Scholar
[18]
W.F. Ho, C.P. Ju and J.H. Chern Lin: Biomaterials Vol. 20 (1999), p.2115.
Google Scholar
[19]
N.T.C. Oliveira, G. Aleixo, R. Caram and A.C. Guastaldi: Materials Science and Engineering A Vols. 452-453 (2007), p.727.
Google Scholar
[20]
M. Abdel-Hady, K. Hinoshita and M. Morinaga: Scripta Materialia Vol. 55 (2006), p.477.
Google Scholar
[21]
M. Abdel-Hady, K. Hinoshita, H. Fuwa, Y. Murata and M. Morinaga: Materials Science and Engineering Vol. A 480 (2008), p.167.
DOI: 10.1016/j.msea.2007.06.083
Google Scholar
[22]
W.F. Ho, S.C. Wu, S.K. Hsu, Y.C. Li and H.C. Hsu: Materials Science and Engineering C Vol. 32 (2012), p.517.
Google Scholar
[23]
W.F. Ho: Journal of Medical and Biological Engineering Vol. 28 (2008), p.47.
Google Scholar
[24]
J.R.S. Martins Júnior, R.A. Nogueira, R.O. Araújo, T.A.G. Donato, V.E. Arana-Chavez, A.P.R.A. Claro, J.C.S. Moraes, M.A.R. Buzalaf and C.R. Grandini: Materials Research Vol. 14 (2011), p.107.
DOI: 10.1590/s1516-14392011005000013
Google Scholar