Biocidal Glasses with High Performance: Comparison of the Antimicrobial Action Obtained by Use of Different Metal Ions

Article Preview

Abstract:

The development of antimicrobial materials and its use have shown an effective way to reduce the risks posed to human life by fungi, bacteria and other pathogenic microorganisms. This work presents preliminary results about the development of powder biocidal vitreous, applying the ionic exchange process between the sodium ions, present in the glass matrix, and ionic oligodynamic species, present in the ionic exchange medium. The magnitude of the oligodynamic effect was modified with the use of different metal ions, providing significant difference in antimicrobial performance. Three samples were prepared incorporating different ionic metal in its glass matrix during the ionic exchange process, Ag+, Zn2+ and Cu2+. These precursors of cations were used: AgNO3 for the silver ions, ZnSO4 for the zinc ions and Cu (NO3)2 for the cooper ions. Samples were submitted to microbiological analysis – Agar Diffusion Test for Escherichia coli and Staphylococcus aureus bacterial species, and fungus species Candida albicans – and atomic absorption techniques. Results showed higher microbiological magnitude to the silver-glass, followed by the cooper-glass and zinc-glass.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

963-968

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Appendini and J.H. Hotchkiss: Innovative Food Science & Emerging Technologies Vol. 3 (2002), p.113.

Google Scholar

[2] M.A. Fiori, M.M.S. Paula, E. Angioletto, M.F. Santos, H.G. Riella and M.G. Quadri: Materials Science Forum Vols. 591-593 (2008), p.362.

DOI: 10.4028/www.scientific.net/msf.591-593.362

Google Scholar

[3] S. Quintavalla and L. Vicini: Meat Science Vol. 62 (2002), p.373.

Google Scholar

[4] C. Catherine: Journal of Food Protection Vol. 625 (1999), p.474.

Google Scholar

[5] Antimicrobial plastics additives: Trends and latest development in North America. Plastics Additives & Compounding December (2002), p.18.

DOI: 10.1016/s1464-391x(02)80162-3

Google Scholar

[6] A. Chakravarti, S. Gangodawila, M.J. Long, N.S. Morris, A.R. Blacklock and D.J. Stickler: The Journal of Urology Vol. 174 (2005), p.1129.

DOI: 10.1097/01.ju.0000168618.79096.cb

Google Scholar

[7] D. Tien, K. Tseng, C. Liao and T. Tsung: Journal of Alloys and Compounds Vol. (2008), p.1.

Google Scholar

[8] S. Ahn, S. Lee, J. Kook and B. Lim: Dental Materials Vol. 25 (2009), p.206.

Google Scholar

[9] K.D. Secinti, M. Ayten, G. Kahilogullari, G. Kaygusuz, H.C. Ugur and A. Attar: Journal of Clinical Neuroscience Vol. 15 (2008), p.434.

DOI: 10.1016/j.jocn.2007.03.010

Google Scholar

[10] U. Samuel and J.P. Guggenbichler: International Journal of Antimicrobial Agents Vol. 23S1 (2004), p. S75.

Google Scholar

[11] M.A. Fiori, M.M.S. Paula, A.M. Bernardin, H.G. Riella and E. Angioletto: Materials Science and Engineering C. Vol. 29 (2009), p.1569.

Google Scholar

[12] A.Z. Woinarski, I. Snape, G.W. Stevens and S.C. Stark: Cold Regions Science and Technology Vol. 37 (2003), p.159.

Google Scholar

[13] H. Perry and C.H. Chilton: Manual de Engenharia Química. (Guanabara Dois, 5° ed. Rio de Janeiro 1986).

Google Scholar

[14] E. Mendes, K.F. Silva, A. Teixeira, L. Silva, M.M.S. Paula, E. Angioletto, H.G. Riella and M.A. Fiori: Materials Science Forum Vols. 660-661 (2010), p.873.

DOI: 10.4028/www.scientific.net/msf.660-661.873

Google Scholar

[15] R. Dohrmann: Applied Clay Science Vol. 34 (2006), p.38.

Google Scholar

[16] M.F. Santos, C. Machado, C.G. Tachinski, J.F. Júnior, R. Piletti, M. Peterson and M.A. Fiori: Materials Science and Engineering C Vol. 39 (2014), p.403.

DOI: 10.1016/j.msec.2014.03.015

Google Scholar