Different Synthesis Routes for Hydroxyapatite Nanoparticles by Mechanical Stirring

Article Preview

Abstract:

Nanosized hydroxyapatite (HA) with crystallinity and composition similar to bone apatite has been widely investigated in the last years, due to their excellent biocompatibility in bone replacement applications. This bioceramic can be synthesized by many wet chemical and mechanochemical methods. In this paper, nanosized hydroxyapatite powders were synthesized by two wet chemical routes using mechanical stirring method. The first route was used for HA synthesis from CaCl2.2H2O and Na3PO4.12H2O solutions and the second route was from Ca (OH)2 and H3PO4 solutions. The synthesized HA nanoparticles were characterized by Dynamic Light Scattering, BET Surface Area analysis, X-ray Diffraction, Infrared Spectroscopy, chemical analysis and Scanning Electron Microscopy. The results indicated that HA nanoparticles were successfully synthesized by both wet chemical precipitation routes and all powders presented a Ca/P ratio similar to stoichiometric HA, nanoneedles morphology and single HA crystalline phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

969-974

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Vallet-Regí, J.M. Gonzáles-Calbet: Prog. Solid State Chem. Vol. 32 (2004), p.1.

Google Scholar

[2] S.V. Dorozhkin: Materials Vol. 2 (2009), p.399.

Google Scholar

[3] J.D. Pasteris, B. Wopenka, E. Valsami-Jones: Elements Vol. 4 (2008), p.97.

Google Scholar

[4] H. Zhou, J. Lee: Acta Biomater. Vol. 7 (2011), p.2769.

Google Scholar

[5] E. Engel, S. Del Valle, C. Aparicio, G. Altankov, L. Asin, J.A. Planell, M.P. Ginebra: Tissue Eng. Part A Vol. 14 (2008), p.1341.

DOI: 10.1089/ten.tea.2007.0287

Google Scholar

[6] S-H. Lee, H. Shin: Adv. Drug Delivery Rev. Vol. 59 (2007), p.339.

Google Scholar

[7] S. J Kalita, A. Bhardwaj, H.A. Bhatt: Mater. Sci. Eng. C Vol. 27 (2007), p.441.

Google Scholar

[8] S.V. Dorozhkin: Materials Vol. 2 (2009), p. (1975).

Google Scholar

[9] Y. Cai, Y. Liu, W. Yan, Q. Hu, J. Tao, M. Zhang, Z. Shi, R. Tang: J. Mater. Chem. Vol. 17 (2007), p.3780.

Google Scholar

[10] C. Drouet, F. Bosc, M. Banu, C. Largeot, C. Combes, G. Dechambre, C. Estournes, G. Raimbeaux, C. Rey: Powder Technol. Vol. 190 (2009), p.118.

DOI: 10.1016/j.powtec.2008.04.041

Google Scholar

[11] P. Parhi, A. Ramanan, A.R. Ray: Mater. Lett. Vol. 58 (2004), p.3610.

Google Scholar

[12] S. Catros, F. Guillemot, E. Lebraud, C. Chanseau, S. Perez, R. Bareille , J. Amédée, J.C. Fricain: IRBM Vol. 31 (2010), p.226.

DOI: 10.1016/j.irbm.2010.04.002

Google Scholar

[13] A. S Posner: J. Biomed. Mater. Res. Vol. 19 (1985), p.241.

Google Scholar

[14] E. Landi, G. Celotti, G. Logroscino, A. Tampieri: J. Eur. Ceram. Soc. Vol. 23 (2003), p.2931.

Google Scholar

[15] S.V. Oliveira, S.N. Cavalcanti, G.P. Rabello, E.M. Araújo, M.V.L. Fook VI Congresso Nacional de Engenharia Mecânica (CONEM). Campina Grande, 18 a 21 de agosto de 2010. Proceeding.. Campina Grande 2010. (PB).

DOI: 10.14393/19834071.2015.30311

Google Scholar

[16] E.A. Filho, C.M. Assis, L.O. Vercik, A.C. Guastaldi: Quim. Nova Vol. 30 (2007), p.1129.

Google Scholar

[17] S.K. Swain, S.V. Dorozhkin, D. Sarkar: Mater. Sci. Eng. Vol. 32 (2012), p.1237.

Google Scholar

[18] P.N. Kumta, C. Sfeir, D.H. Lee, D. Olton, D. Choi: Acta Biomater. Vol. 1 (2005), p.65.

Google Scholar

[19] A. Afshar, M. Ghorbani, N. Ehsani, M.R. Saeri, C.C. Sorrell: Mater. Des. Vol. 24 (2003), p.197.

Google Scholar

[20] J.F. Conn, L.A. Jessen, US Patent 4324772. (1980).

Google Scholar

[21] C. Zhang, J. Yang, Z. Quan, P. Yang, C. Li, Z. Hou, et al.: Cryst. Growth Des Vol. 9 (2009), p.2725.

Google Scholar