The Structure and Phase Composition of the Diffusion Zone in a Titanium and Steel Composite

Article Preview

Abstract:

An investigation is performed on the influence of the temperature and duration of heating of the explosively welded titanium ВТ1-0+ Steel 20 composite on the phase composition of the diffusion layer formed at the interface. It is shown that after heating to 800 oС the diffusion layer consists of α + α’-Ti , an iron solid solution in titanium and a decarburized zone. When heated at the temperature range from 900 – 1000 oС, the composition of the diffusion layer is as follows: α + α’-Ti acicular structure, Fe2Ti and FeTi intermetallics, TiC titanium carbide, titanium solid solution in α-Fe and a decarburized zone.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

214-218

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yu.P. Trykov, L.M. Gurevitch, V.G. Shmorgun, Titanium and steel composites and compounds, VolgGTU, Volgograd, (2013).

Google Scholar

[2] Yu.P. Trykov, V.G. Shmorgun, Properties and performance of layered composites, VolgGTU, Volgograd, (1999).

Google Scholar

[3] Yu.P. Trykov, O.V. Slautin, S.A. Abramenko, Influence of Rolling on the Micromechanical Properties of Titanium-Steel Composites, Steel in Translation. 37 (2007) 252.

DOI: 10.3103/s0967091207030199

Google Scholar

[4] P. Huang, N. X. Wang, L. H. Zhou, Reasearch on Titanium Plate and Steel Plate in Explosive Welding Process Engineering, Applied Mechanics and Materials. 170 (2012) 3228-3236.

DOI: 10.4028/www.scientific.net/amm.170-173.3228

Google Scholar

[5] P. Liu, J.P. Jiang, H.G. Guo, B.L. Sun, Three Wave Interfaces of Titanium/Steel Laminates Manufactured by Explosive Welding, Advanced Materials Research. 641 (2013) 570-573.

DOI: 10.4028/www.scientific.net/amr.641-642.570

Google Scholar

[6] A. Kurek, M. Wachowski, A. Niesłony, T. Płocinski, K.J. Kurzydłowski, Fatigue Tests and Metallographic of Explosively Cladded Steel-Titanium Bimetal, Archives of Metallurgy and Materials. 59 (2014) 1565-1570.

DOI: 10.2478/amm-2014-0265

Google Scholar

[7] B.O. Hong, W. Jiang, L. Duarte, C. Leinenbach, Thermodynamic re-assessment of Fe–Ti binary system, Transactions of Nonferrous Metals Society of Chin. 22 (2012) 2204-2211.

DOI: 10.1016/s1003-6326(11)61450-7

Google Scholar

[8] Yu.P. Trykov, V.N. Arisova, L.M. Gurevitch, V.G. Shmorgun, Of component interaction in a titanium-steel composite, Perspectivniye materialy. 6 (2004) 43-47.

Google Scholar

[9] M.H. Shorshorov, Material study of welding steel and titanium alloys, Nauka, Moscow, (1965).

Google Scholar

[10] M. Ghosh, K. Bhanumurthy, G.B. Kale, J. Krishnan, S. Chatterjee, Diffusion bonding of titanium to 304 stainless steel, Journal of Nuclear Materials. 322 (2003) 235-241.

DOI: 10.1016/j.jnucmat.2003.07.004

Google Scholar

[11] M.E. Blanter, Phase conversions during steel heat treatment, Metallurgizdat, Moscow, (1962).

Google Scholar