Kinetic Description of (Cr, Fe)7C3 Carbide Dissolution in Austenite of High-Carbon Fe-Cr-C Ternary Alloys

Article Preview

Abstract:

The paper examines the available experimental data to produce a model for quantitative prediction of the change of M7C3 carbide fraction and austenite chemical composition during holding of ternary alloys Fe–Cr–C (used as wear-resistant white cast irons and tool steels) in austenite + carbide region. Carbide dissolution is well described by Avrami type equation with exponent n close to 1/2. Dependences of the coefficient of this equation on carbide fraction and of the activation energy of the temperature dependence of this coefficient on carbide composition are established. As a result, a model that permits to calculate the fraction and chemical composition of austenite and M7C3 carbide in an Fe–Cr–C alloy of arbitrary composition after isothermal holding at given temperature for given time is obtained; equilibrium phase composition is needed to be known from thermodynamic models. This allows predicting the results of hardening after different austenitization regimes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

409-415

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.I. Tsypin, White Wear-Resistant Cast Irons: Structure and Properties, Metallurgiya Publ., Moscow, 1983. (in Russ. ).

Google Scholar

[2] A.A. Zhukov, G.I. Sil'man, M.S. Frol'tsov, Wear-Resistant Castings of Complex Alloy White Cast Irons, Mashinostroenie Publ., Moscow, 1984. (in Russ. ).

Google Scholar

[3] D.A. Mirzaev, N.M. Mirzaeva, A.N. Emelyushin, Ledeburite alloys for tools for machining of graphite, Metal Science and Heat Treatment. 30 (1988) 519-523. DOI: 10. 1007/BF00777442.

DOI: 10.1007/bf00777442

Google Scholar

[4] A.N. Emelyushin, D.A. Mirzaev, N.M. Mirzaeva, E.V. Petrochenko, N.V. Koptseva, Metal Science, Physics and Mechanics Applied to Working of Graphitized Materials, Structure and Wear Resistance of Tools, MGTU Publ., Magnitogorsk, 2002. (in Russ. ).

Google Scholar

[5] A.N. Emelyushin, D.A. Mirzaev, N.M. Mirzaeva, E.V. Petrochenko, K. Yu. Okishev, O.S. Molochkova, Cast Tools of Chromium Cast Irons, Structure and Properties, MGTU Publ., Magnitogorsk, 2016. (in Russ. ).

Google Scholar

[6] Yu.A. Geller, Tool Steels, Metallurgiya Publ., Moscow, 1983. (in Russ. ).

Google Scholar

[7] G. Krauss, Steels: Heat Treatment and Processing Principles, ASM International, (1990).

Google Scholar

[8] K. Yu. Okishev, A.S. Sozykina, Structure and hardness changes with hardening temperature in high-chromium steels and cast irons, Bull. of the South Ural State Univ. Ser. Metallurgy. 16 (2011) 67-70. (in Russ. ).

Google Scholar

[9] Yu.D. Koryagin, K. Yu. Okishev, A.S. Sozykina, Optimization of chemical composition and heat treatment of high-carbon iron alloys with 14 % chromium and 3 % vanadium, in: Proceeding of Materials Science Forum. 843 (2016).

DOI: 10.4028/www.scientific.net/msf.843.111

Google Scholar

[10] C. Zener, Kinetics of the decomposition of austenite, Trans. AIME. 167 (1946) 550-583.

Google Scholar

[11] M. Hillert, Solid state phase transformations, Jernkontoret Annaler. 141 (1957) 757-790.

Google Scholar

[12] C. Wert, C. Zener, Interference of growing spherical precipitate particles, J. Appl. Phys. 21 (1950) 5-8. DOI: 10. 1063/1. 1699422.

DOI: 10.1063/1.1699422

Google Scholar

[13] J.W. Christian, The Theory of Transformations in Metals and Alloys, Pt. I. Elsevier Sci. Ltd., 2002. DOI: 10. 1016/B978-008044019-4/50016-7.

Google Scholar

[14] B. -J. Lee, On the stability of Cr carbides, CALPHAD. 16 (1992) 121-149. DOI: 10. 1016/0364-5916(92)90002-F.

DOI: 10.1016/0364-5916(92)90002-f

Google Scholar

[15] A.W. Bowen, G.M. Leak, Solute diffusion in alpha- and gamma-iron, Metallurgical Transactions. 1 (1970) 1695-1700. DOI: 10. 1007/BF02642019.

DOI: 10.1007/bf02642019

Google Scholar

[16] P.L. Gruzin, Diffusion of cobalt, chromium and tungsten in iron and steel, Doklady AN SSSR. 94 (1954) 681-684. (in Russ. ).

Google Scholar

[17] S. Gertsriken, I. Dekhtyar, Investigation of chromium diffusion in iron-chromium alloys with impurities, Zhurnal Tekhnicheskoy Fiziki. 20 (1950) 1005-1014. (in Russ. ).

Google Scholar

[18] K. Nakazawa, Effect of austenitic state on the Ms point of hypereutectoid alloy steel, J. Japan Inst. Metals and Materials. 27 (1963) 245-250.

DOI: 10.2320/jinstmet1952.27.6_245

Google Scholar

[19] M. Hansen, K. Anderko, Constitution of Binary Alloys, McGraw-Hill Book Co., (1958).

Google Scholar

[20] F. Maratray, R. Usseglio-Nanot, Atlas: transformation curves White iron chromium and chromium-molybdenum, Climax Molybdenum S.A., Paris, (1970).

Google Scholar

[21] D.A. Mirzaev, Yu.D. Koryagin, A.A. Kulikov, A.S. Sozykina, Heat Treatment of Castings from White Wear-Resistant Cast Iron, Bull. of the South Ural State Univ. Ser. Metallurgy. 13 (2013) 111-115.

Google Scholar

[22] Ya.R. Rauzin, Heat Treatment of Chromium Steel, Mashinostroenie Publ., Moscow, 1978. (in Russ. ).

Google Scholar

[23] V.S. Popov, N.N. Brykov, N.S. Dmitrichenko, P.G. Pristupa, Durability of Refractory Brick Production Equipment, Metallurgiya Publ., Moscow, 1978. (in Russ. ).

Google Scholar