Electronic Structures of Antisite Defects in Chiral (6,2) SiC Nanotubes

Article Preview

Abstract:

Antisite defects are common defects in nanotube materials and have seriously impacts on their electronic properties. Based on density-functional theory calculations, the electronic structures of the antisite defective chiral (6, 2) SiCNTs are investigated. C antisite and Si antisite lead to the formation of a depression and a bump in the surface of the nanotube, respectively. In the band gap of the SiCNT with a C antisite defect, the occupied level near the top of the valence band is formed, while the unoccupied level originating from the Si antisite defect enters the conduction band of the SiCNT.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

38-42

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 345 (1991) 56.

Google Scholar

[2] P. Melinon, B. Masenelli, F. Tournus, A. Perez, Playing with carbon and silicon at the nanoscale, Nat. Mater. 6 (2007) 479.

DOI: 10.1038/nmat1914

Google Scholar

[3] X.H. Sun, C.P. Li, W.K. Wong, N.B. Wong, C.S. Lee, S.T. Lee, B.K. Teo, Templating effect of hydrogen-passivated silicon nanowires in the production of hydrocarbon nanotubes and nanoonions via sonochemical reactions with common organic solvents under ambient conditions, J. Am. Chem. Soc. 124(2002).

DOI: 10.1021/ja0283706

Google Scholar

[4] J.Y. Zhou, M. Zhou, Z.Y. Chen, Z.X. Zhang, C.C. Chen, R.S. Li, X.P. Gao, E.Q., SiC nanotubes arrays fabricated by sputtering using electrospun PVP nanofiber as templates, Surf. Coat. Technol. 203(2009) 3219-3223.

DOI: 10.1016/j.surfcoat.2009.03.055

Google Scholar

[5] Z.F. Xie, D.L. Tao, J.Q. Wang, Synthesis of silicon carbide nanotubes by chemical vapor deposition, J. Nanosci. Nanotechnol. 7 (2007) 645 -652.

DOI: 10.1166/jnn.2007.142

Google Scholar

[6] L.Z. Pei, Y.H. Tang, Y.W. Chen, C. Guo, X.X. Li, Y. Yuan, Y. Zhang, Preparation of silicon carbide nanotubes by hydrothermal method, J. Appl. Phys. 99 (2006) 114306.

DOI: 10.1063/1.2202111

Google Scholar

[7] G. Cubiotti, Y. Kucherenko, A. Yaresko, A. Perlov, and V. Antonov, The effect of the atomic relaxation around defects on the electronic structure and optical properties of beta-SiC, J. Phys.: Condens. Matter 11 (1999), 2265.

DOI: 10.1088/0953-8984/11/10/013

Google Scholar

[8] W. C. Lu, K. M. Zhang, and X. D. Xie, An electronic-Structure study of single native defects in beta-SiC, J. Phys.: Condens. Matter 5 (1993), 891.

Google Scholar

[9] G. Cubiotti, Y. Kucherenko, A. Yaresko, A. Perlov, and V. Antonov, Electronic states and optical properties of beta-SiC containing paired antisite defects, J. Electron Spectrosc. Relat. Phenom. 88(1998), 957.

DOI: 10.1016/s0368-2048(97)00186-2

Google Scholar

[10] R. Aavikko, K. Saarinen, F. Tuomisto, B. Magnusson, N. T. Son, and E. Janzen, Clustering of vacancy defects in high-purity semi-insulating SiC, Phys. Rev. B 75 (2007), 8.

DOI: 10.1103/physrevb.75.085208

Google Scholar

[11] R.J. Baierle, P. Piquini, L.P. Neves, R.H. Miwa, Ab initio study of native defects in SiC nanotubes, Phys. Rev. B 74 (2006) 155425.

DOI: 10.1103/physrevb.74.155425

Google Scholar

[12] E. C. Anota,G. H. Cocoletzi, Influence of point defects on the structural and electronic properties of SiC nanotubes, Central European Journal of Chemistry 12 (2014), 53.

DOI: 10.2478/s11532-013-0357-6

Google Scholar

[13] R.J. Baierle, R.H. Miwa, Hydrogen interaction with native defects in SiC nanotubes, Phys. Rev. B 76 (2007) 205410.

Google Scholar

[14] R. L. Liang, Y. Zhang, J. M. Zhang, and V. Ji, Adsorption of oxygen atom on the pristine and antisite defected SiC nanotubes, Physica B 405 (2010), 2673.

DOI: 10.1016/j.physb.2010.03.053

Google Scholar

[15] M. Khodadad, S. M. Baizaee, M. Yuonesi, and H. Kahnouji, First-principles study of structural and electronic properties of lithium doped SiC nanotubes, Physica E 59(2014), 139.

DOI: 10.1016/j.physe.2014.01.015

Google Scholar

[16] J. Dai, D. Chen, and Q. Li, First-principle study on the X (X=N, P, As, Sb) doped (9, 0) single-walled SiC nanotubes, Physica B 447(2014), 56.

DOI: 10.1016/j.physb.2014.04.065

Google Scholar

[17] G. Alfieri, T. ElecKimoto, The structural and electronic properties of chiral SiC nanotubes: a hybrid density functional study, Nanotechnology 20 (2009) 28570.

DOI: 10.1088/0957-4484/20/28/285703

Google Scholar

[18] B. Delley, An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules, J. Chem. Phys. 92 (1990) 508.

DOI: 10.1063/1.458452

Google Scholar

[19] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[20] H.J. Monkhorst, J.D. Pack, Special points for Brillonin-zone integrations, Phys. Rev. B, Solid State 16(1977)1746.

Google Scholar

[21] J. X. Song, Y.T. Yang, L.X. Guo, P. Wang, Z.Y. Zhang, Investigation on influence of antisite defects on electronic structure and optical properties of silicon carbide nanotube, Acta Physica Sinica 61 (2012) 237301.

DOI: 10.7498/aps.61.237301

Google Scholar

[22] P. Piquini, R. J. Baierle, T. M. Schmidt, and A. Fazzio, Formation energy of native defects in BN nanotubes: an ab initio study, Nanotechnology 16 (2005), 827.

DOI: 10.1088/0957-4484/16/6/035

Google Scholar