Modelling of the Age-Hardening Behavior in AA6xxx within a Through-Process Modelling Framework

Article Preview

Abstract:

The manufacturing of AA6xxx car body panels typically consists of rolling, ageing and forming processes. Thus, multiple simulation tools can be coupled to set up a through-process modelling (TPM) framework for predicting the evolution of microstructure and the final mechanical properties of these products. In order to realize such a TPM concept, various industrial processing phenomena were studied and modelled in the open innovation research cluster “Advanced Metals and Processes” (AMAP). This work focuses on the age hardening behavior which takes place during the industrial paint bake process. To reflect the microstructure evolution of this processing step, a multi-component precipitation model is developed. So far, the influences of thermomechanical processes, i.e. annealing temperature on the kinetics of MgxSiy precipitates during artificial aging were implemented. The precipitation model was linked to a yield strength model in order to simulate the evolution of mechanical properties within the TPM framework. For validation, the evolution of microstructure and mechanical properties of an AA6016 alloy during artificial ageing was investigated via transmission electron microscopy (TEM) and tensile testing. The simulation results are in agreement with experimental observations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

640-646

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Hirsch, AlMn1Mg1 for beverage cans, Virtual fabrication of aluminium products. Weinheim, Wiley-VCH Verlag, (2006).

Google Scholar

[2] E. Kozeschnik, Modelling solid-state precipitation, Momentum Press, LLC. (2013)1-464.

Google Scholar

[3] D. B. Williams & C. B. Carter, The transmission electron microscopy, Springer, LLC. (1996)3-17.

Google Scholar

[4] F. Delmas, M. J. Casanove, P. Lours, A. Couret, A. Coujou, Quantitative TEM study of the precipitation microstructure in aluminium alloy Al(MgSiCu) 6056 T6, Materials Science and Engineering:A. 373 (2004) 80-89.

DOI: 10.1016/j.msea.2003.12.068

Google Scholar

[5] R. Wagner, R. Kampmann. Homogeneous second-phase precipitation. Phase Transformations in Materials. Weinheim, Wiley-VCH Verlag, (2001).

Google Scholar

[6] R. Becker, W. Döring, Kinetische behandlung der keimbildung in übersättigten dämpfen, Analen der Physik. 24 (1935) 719-752.

DOI: 10.1002/andp.19354160806

Google Scholar

[7] E. Povoden-Karadeniz, P. Lang, P. Warczok, A. Falahati, W. Jun, E. Kozeschnik. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, Calphad. 43 (2013) 94-104.

DOI: 10.1016/j.calphad.2013.03.004

Google Scholar

[8] O. R. Myhr, Ø. Grong, S. J. Andersen, Modelling of the age hardening behaviour of Al–Mg–Si alloys, Acta Materialia. 49 (2001) 65-75.

DOI: 10.1016/s1359-6454(00)00301-3

Google Scholar

[9] C. S. Tsao, C. Y. Chen, U. S. Jeng, T. Y. Kuo, Precipitation kinetics and transformation of metastable phases in Al–Mg–Si alloys, Acta Materialia. 54 (2006) 4621-4632.

DOI: 10.1016/j.actamat.2006.06.005

Google Scholar

[10] G. A. Edwards, K. Stiller, G. L. Dunlop, M. J. Couper, The precipitation sequence in Al–Mg–Si alloys, Acta Materialia. 46 (1998) 3893-3904.

DOI: 10.1016/s1359-6454(98)00059-7

Google Scholar

[11] R. Vissers, M. A. van Huis, J. Jansen, H. W. Zandbergem, C. D. Marioara, S. J. Andersen, The crystal structure of the β' phase in Al–Mg–Si alloys, Acta Materialia. 55 (2007) 3815-3823.

DOI: 10.1016/j.actamat.2007.02.032

Google Scholar

[12] Y. Wang, Z. K. Liu, L. Q. Chen, C. Wolverton, First-principles calculations of β "-Mg5Si6/α-Al interfaces, Acta Materialia. 55(2007) 5934-5947.

DOI: 10.1016/j.actamat.2007.06.045

Google Scholar

[13] O. R. Myhr, Ø. Grong. Modelling of non-isothermal transformations in alloys containing a particle distribution, Acta Materialia. 48 (2000) 1605-1615.

DOI: 10.1016/s1359-6454(99)00435-8

Google Scholar

[14] Z. Liu, Dissertation, RWTH Aachen. (2013).

Google Scholar