[1]
P.V. Liddicoat, X.Z. Liao, Y.T. Zhu, Y.H. Zhao, E.J. Lavernia, M.Y. Murashkin, R.Z. Valiev, S.P. Ringer, New hierarchy of solute architecture breaks strength ceiling in a nanocrystalline aluminium alloy, Nature Commun. 1 (2010) 63/1-7.
DOI: 10.1038/ncomms1062
Google Scholar
[2]
A. P. Zhilyaev, T. G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893-979.
DOI: 10.1016/j.pmatsci.2008.03.002
Google Scholar
[3]
S. Sabbaghianrad, T. G. Langdon, A critical evaluation of the processing of an aluminum 7075 alloy using a combination of ECAP and HPT, Mater. Sci. Eng. A 596 (2014) 52–58.
DOI: 10.1016/j.msea.2013.12.034
Google Scholar
[4]
M. Kawasaki, T.G. Langdon, The significance of strain reversals during processing by high-pressure torsion, Mater. Sci. Eng. A 498 (2008) 341–348.
DOI: 10.1016/j.msea.2008.08.021
Google Scholar
[5]
B. Ahn, A.P. Zhilyaev, H. -J. Lee, M. Kawasaki, T.G. Langdon, Rapid synthesis of an extra hard metal matrix nanocomposite at ambient temperature, Mater. Sci . Eng. A 635 (2015) 109-117.
DOI: 10.1016/j.msea.2015.03.042
Google Scholar
[6]
M. Kawasaki, B. Ahn, H. -J. Lee, A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion to process an aluminum-magnesium nanocomposite through diffusion bonding, J. Mater. Res. (in press) DOI: 10. 1557/jmr. 2015. 257.
DOI: 10.1557/jmr.2015.257
Google Scholar
[7]
B. Ahn, H. -J. Lee, I. -C. Choi, M. Kawasaki, J. -i. Jang, T.G. Langdon, Micro-mechanical behavior of an exceptionally strong metal matrix nanocomposite processed by high-pressure torsion, Adv. Eng. Mater. (in press).
DOI: 10.1002/adem.201500520
Google Scholar
[8]
M. Kawasaki, S.N. Alhajeri, C. Xu, T.G. Langdon, The development of hardness homogeneity in pure aluminum and aluminum alloy disks processed by high-pressure torsion, Mater. Sci. Eng. A 529 (2011) 345-351.
DOI: 10.1016/j.msea.2011.09.039
Google Scholar
[9]
H. -J. Lee, S.K. Lee, K.H. Jung, G.A. Lee, B. Ahn, M. Kawasaki, T.G. Langdon, Evolution in hardness and texture of a ZK60A magnesium alloy processed by high-pressure torsion, Mater. Sci. Eng. A 630 (2015) 90-98.
DOI: 10.1016/j.msea.2015.02.011
Google Scholar
[10]
M. Kawasaki, Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion, J. Mater. Sci. 49 (2014) 18-34.
DOI: 10.1007/s10853-013-7687-9
Google Scholar
[11]
B.N. Lucas, W.C. Oliver, Indentation power-law creep of high purity indium. Metall. Mater. Trans. A 30A (1999) 601-610.
DOI: 10.1007/s11661-999-0051-7
Google Scholar
[12]
S. Shim, J. -i. Jang, G.M. Pharr, Extraction of flow properties of single-crystal silicon carbide by nanoindentation and finite-element simulation, Acta Mater. 56 (2008) 3824-3832.
DOI: 10.1016/j.actamat.2008.04.013
Google Scholar
[13]
N.Q. Chinh, T. Csanádi, T. Győri, R.Z. Valiev, B.B. Straumal, M. Kawasaki, T.G. Langdon, Strain rate sensitivity studies in an ultrafine-grained Al-30 wt. % Zn alloy using micro- and nanoindentation, Mater. Sci. Eng. A 543 (2012) 117-120.
DOI: 10.1016/j.msea.2012.02.056
Google Scholar
[14]
F.H. Dalla Torre, A.C. Hänzi, P.J. Uggowitzer, Microstructure and mechanical properties of microalloyed and equal channel angular extruded Mg alloys, Scr. Mater. 59 (2008) 207-210.
DOI: 10.1016/j.scriptamat.2008.03.017
Google Scholar
[15]
D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, R.Z. Valiev, Deformation behavior and plastic instabilities of ultrafine-grained titanium, Appl. Phys. Lett. 79 (2001) 611.
DOI: 10.1063/1.1384000
Google Scholar
[16]
B.Q. Han, Z. Lee, S.R. Nutt, E.J. Lavernia, F.A. Mohamed, Mechanical properties of an ultrafine-grained Al-7. 5 pct Mg alloy, Metall. Mater. Trans. A 34A (2003) 603-613.
DOI: 10.1007/s11661-003-0095-z
Google Scholar
[17]
B.Q. Han, J. Huang, Y.T. Zhu, E.J. Lavernia, Negative Strain-rate sensitivity in a nanostructured aluminum alloy, Adv. Eng. Mater. 8 (2006) 945-947.
DOI: 10.1002/adem.200600164
Google Scholar
[18]
R.C. Picu, A mechanism for the negative strain-rate sensitivity of dilute solid solutions, Acta Mater. 52 (2004) 3447-3458.
DOI: 10.1016/j.actamat.2004.03.042
Google Scholar
[19]
H. Zhang, K.T. Ramesh, E.S.C. Chin, High strain rate response of aluminum 6092/B4C composites, Mater. Sci. Eng. A 384 (2004) 26-34.
DOI: 10.1016/j.msea.2004.05.027
Google Scholar
[20]
X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, R.Z. Valiev, Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena, Mater. Sci. Eng. A 540 (2012) 1-12.
DOI: 10.1016/j.msea.2012.01.080
Google Scholar