Mechanical Behavior of a Metal Matrix Nanocomposite Synthesized by High-Pressure Torsion via Diffusion Bonding

Article Preview

Abstract:

High-pressure torsion (HPT) is one of the major severe plastic deformation (SPD) procedures where disk metals generally achieve exceptional grain refinement at ambient temperatures. HPT has been applied for the consolidation of metallic powders and bonding of machining chips whereas very limited reports examined the application of HPT for the fabrication of nanocomposites. An investigation was initiated to evaluate the potential for the formation of a metal matrix nanocomposite (MMNC) by processing two commercial metal disks of Al-1050 and ZK60 magnesium alloy through HPT at room temperature. Evolutions in microstructure and mechanical properties including hardness and plasticity were examined in the processed disks with increasing numbers of HPT turns up to 5. This study demonstrates the promising possibility for using HPT to fabricate a wide range of hybrid MMNCs from simple metals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1068-1073

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.V. Liddicoat, X.Z. Liao, Y.T. Zhu, Y.H. Zhao, E.J. Lavernia, M.Y. Murashkin, R.Z. Valiev, S.P. Ringer, New hierarchy of solute architecture breaks strength ceiling in a nanocrystalline aluminium alloy, Nature Commun. 1 (2010) 63/1-7.

DOI: 10.1038/ncomms1062

Google Scholar

[2] A. P. Zhilyaev, T. G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893-979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[3] S. Sabbaghianrad, T. G. Langdon, A critical evaluation of the processing of an aluminum 7075 alloy using a combination of ECAP and HPT, Mater. Sci. Eng. A 596 (2014) 52–58.

DOI: 10.1016/j.msea.2013.12.034

Google Scholar

[4] M. Kawasaki, T.G. Langdon, The significance of strain reversals during processing by high-pressure torsion, Mater. Sci. Eng. A 498 (2008) 341–348.

DOI: 10.1016/j.msea.2008.08.021

Google Scholar

[5] B. Ahn, A.P. Zhilyaev, H. -J. Lee, M. Kawasaki, T.G. Langdon, Rapid synthesis of an extra hard metal matrix nanocomposite at ambient temperature, Mater. Sci . Eng. A 635 (2015) 109-117.

DOI: 10.1016/j.msea.2015.03.042

Google Scholar

[6] M. Kawasaki, B. Ahn, H. -J. Lee, A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion to process an aluminum-magnesium nanocomposite through diffusion bonding, J. Mater. Res. (in press) DOI: 10. 1557/jmr. 2015. 257.

DOI: 10.1557/jmr.2015.257

Google Scholar

[7] B. Ahn, H. -J. Lee, I. -C. Choi, M. Kawasaki, J. -i. Jang, T.G. Langdon, Micro-mechanical behavior of an exceptionally strong metal matrix nanocomposite processed by high-pressure torsion, Adv. Eng. Mater. (in press).

DOI: 10.1002/adem.201500520

Google Scholar

[8] M. Kawasaki, S.N. Alhajeri, C. Xu, T.G. Langdon, The development of hardness homogeneity in pure aluminum and aluminum alloy disks processed by high-pressure torsion, Mater. Sci. Eng. A 529 (2011) 345-351.

DOI: 10.1016/j.msea.2011.09.039

Google Scholar

[9] H. -J. Lee, S.K. Lee, K.H. Jung, G.A. Lee, B. Ahn, M. Kawasaki, T.G. Langdon, Evolution in hardness and texture of a ZK60A magnesium alloy processed by high-pressure torsion, Mater. Sci. Eng. A 630 (2015) 90-98.

DOI: 10.1016/j.msea.2015.02.011

Google Scholar

[10] M. Kawasaki, Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion, J. Mater. Sci. 49 (2014) 18-34.

DOI: 10.1007/s10853-013-7687-9

Google Scholar

[11] B.N. Lucas, W.C. Oliver, Indentation power-law creep of high purity indium. Metall. Mater. Trans. A 30A (1999) 601-610.

DOI: 10.1007/s11661-999-0051-7

Google Scholar

[12] S. Shim, J. -i. Jang, G.M. Pharr, Extraction of flow properties of single-crystal silicon carbide by nanoindentation and finite-element simulation, Acta Mater. 56 (2008) 3824-3832.

DOI: 10.1016/j.actamat.2008.04.013

Google Scholar

[13] N.Q. Chinh, T. Csanádi, T. Győri, R.Z. Valiev, B.B. Straumal, M. Kawasaki, T.G. Langdon, Strain rate sensitivity studies in an ultrafine-grained Al-30 wt. % Zn alloy using micro- and nanoindentation, Mater. Sci. Eng. A 543 (2012) 117-120.

DOI: 10.1016/j.msea.2012.02.056

Google Scholar

[14] F.H. Dalla Torre, A.C. Hänzi, P.J. Uggowitzer, Microstructure and mechanical properties of microalloyed and equal channel angular extruded Mg alloys, Scr. Mater. 59 (2008) 207-210.

DOI: 10.1016/j.scriptamat.2008.03.017

Google Scholar

[15] D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, R.Z. Valiev, Deformation behavior and plastic instabilities of ultrafine-grained titanium, Appl. Phys. Lett. 79 (2001) 611.

DOI: 10.1063/1.1384000

Google Scholar

[16] B.Q. Han, Z. Lee, S.R. Nutt, E.J. Lavernia, F.A. Mohamed, Mechanical properties of an ultrafine-grained Al-7. 5 pct Mg alloy, Metall. Mater. Trans. A 34A (2003) 603-613.

DOI: 10.1007/s11661-003-0095-z

Google Scholar

[17] B.Q. Han, J. Huang, Y.T. Zhu, E.J. Lavernia, Negative Strain-rate sensitivity in a nanostructured aluminum alloy, Adv. Eng. Mater. 8 (2006) 945-947.

DOI: 10.1002/adem.200600164

Google Scholar

[18] R.C. Picu, A mechanism for the negative strain-rate sensitivity of dilute solid solutions, Acta Mater. 52 (2004) 3447-3458.

DOI: 10.1016/j.actamat.2004.03.042

Google Scholar

[19] H. Zhang, K.T. Ramesh, E.S.C. Chin, High strain rate response of aluminum 6092/B4C composites, Mater. Sci. Eng. A 384 (2004) 26-34.

DOI: 10.1016/j.msea.2004.05.027

Google Scholar

[20] X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, R.Z. Valiev, Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena, Mater. Sci. Eng. A 540 (2012) 1-12.

DOI: 10.1016/j.msea.2012.01.080

Google Scholar