Development of High-Temperature Shape Memory Alloys above 673 K

Article Preview

Abstract:

TiPd was investigated as a candidate of high-temperature shape memory alloys. To improve shape recovery, solid-solution hardening by addition of alloying element has been performed. The effect of alloying on martensite transformation temperature, shape memory effect, and yield strength of martensite and austenite phases were investigated. Zr and Hf were found to be effective element to improve shape memory effect. The most important factor to improve shape memory effect of TiPd is temperature to form Ti2Pd3 precipitates rather than strengthening.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-112

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Ma, I. Karaman, and R. D. Noebe, Int. Mater. Rev., 55, 5, (2010) 257-315.

Google Scholar

[2] H. Okamoto, Phase diagram for binary alloys, ASM, (2000).

Google Scholar

[3] H. C. Donkersloot and J. H. N. Van Vucht, J. Less-Common Met., 20, 2, (1970) 83-91.

Google Scholar

[4] C. Declairieux, A. Dunquin, P. Ochin, R. Portier, and P. Vermaut, Intermetallics, 19 (2011) 1461-1465.

DOI: 10.1016/j.intermet.2011.05.028

Google Scholar

[5] P. Kumar, D.C. Lagoudas, Acta Mater, 58 (2010) 1618-1628.

Google Scholar

[6] G. S. Bigelow, S. A. Padula II, A. Garg, D. Gaydosh, R. D. Noebe, Metall. Mater. Trans., A, 41A, (2010) 3065-3079.

DOI: 10.1007/s11661-010-0365-5

Google Scholar

[7] K. Otsuka, K. Oda, Y. Ueno, and M. Piao, Scripta Metall. Mater., 29 (1993) 1355-1358.

Google Scholar

[8] Y. Yamabe-Mitarai, T. Hara, S. Miura, H. Harada, Intermetallics, 18 (2010) 2273-2280.

Google Scholar

[9] M. Kawakita, M. Takahashi, S. Takahashi, Y. Yamabe-Mitarai, Mater. Lett., 89 (2012) 336-338.

Google Scholar

[10] G. Bozzolo, H. O. Mosca, R. D. Noebe, Intermetallics, 15 (2007) 901-911.

Google Scholar

[11] R. Arockiakumar, M. Harsh, M. Takahashi, S. Takahashi, Y. Yamabe-Mitarai, submitted.

Google Scholar

[12] Y. YamabeiMitarai, A. Wadood, R. Arockiakumar, T. Hara, M. Takahashi, S. Takahashi, H. Hosoda, Mater. Sci. Forum, 783-786 (2013) 2541-2545.

DOI: 10.4028/www.scientific.net/msf.783-786.2541

Google Scholar

[13] Y. Yamabe-Mitarai, T. Hara, M. J, Phasha, P. E. Ngoepe, H. K. Chikwanda, Interemetallics 31 (2013) 26-33.

DOI: 10.1016/j.intermet.2012.05.016

Google Scholar

[14] A. Wadood, M. Takahashi, S. Takahashi, H. Hosoda, and Y. Yamabe-Mitarai, Mat. Sci. Eng. A, 564 (2013) 34-41.

Google Scholar

[15] A. Wadood and Y. Yamabe-Mitarai, Mat. Sci. Eng. A, 601 (2014) 106-111.

Google Scholar

[16] A. Wadood and Y. Yamabe-Mitarai, Platinum Metalls Rev., 58 (2) (2014) 61-67.

Google Scholar

[17] A. E. Wells, Structural Inorganic Chemistry, 5th ed., Clarendon Press, Oxford, (1984) p.1288.

Google Scholar

[18] Y. Yamabe-Mitarai, R. Arockiakumar, A. Wadood, K. S. Suresh, T. Kitashima, T. Hara, M. Shimojo, W. Tasaki, M. Takahashi, S. Takahashi, H. Hosoda, Mater. Today; Proceedings 25 (2015) S517-S522.

DOI: 10.1016/j.matpr.2015.07.338

Google Scholar