[1]
S. Suresh, Fatigue of materials, Cambridge University Press, (1991).
Google Scholar
[2]
P. Gay, P.B. Hirsch, and A. Kelly, The estimation of dislocation densities in metals from X-ray data, ACTA Metallurgica, 1 (1953) 315-319.
DOI: 10.1016/0001-6160(53)90106-0
Google Scholar
[3]
S. Taira and K. Hayashi, X-Ray investigation on fatigue fracture of notched steel specimen: Observation of fatigue phenomena of annealed low-carbon steel by X-ray microbeam technique, Bulletin of Japanese Society of Mechanical Engineers, 9 (1966).
DOI: 10.1299/jsme1958.9.627
Google Scholar
[4]
S. Taira, X-ray-diffraction approach for studies on fatigue and creep, Experimental Mechanics, 13 (1973) 449-463.
DOI: 10.1007/bf02322729
Google Scholar
[5]
Y. Nakai, K. Tanaka, and T. Nakanishi, The effects of stress ratio and grain size on near-threshold fatigue crack propagation in low-carbon steel, Engineering Fracture Mechanics, 15 (1981) 291-302.
DOI: 10.1016/0013-7944(81)90062-x
Google Scholar
[6]
H. F. Poulsen, Three-dimensional X-ray diffraction microscopy. Mapping polycrystals and their dynamics, Springer Tracts in Modern Physics, Springer, Berlin, (2004).
DOI: 10.1007/978-3-540-44483-1_5
Google Scholar
[7]
B. C. Larson, W. Yang, G. E. Ice, J. D. Budai, and T. Z. Tischler, Three-dimensional X-ray structural microscopy with submicrometre resolution, Nature, 415 (2002) 887-890.
DOI: 10.1038/415887a
Google Scholar
[8]
W. Ludwig, S. Schmidt, E. M. Lauridsen and H. F. Poulsen, X-ray diffraction contrast tomography: A novel technique for three-dimensional grain mapping of polycrystals. I. Direct beam case, Journal of Applied Crystallography, 41, (2008) 302-309.
DOI: 10.1107/s0021889808001684
Google Scholar
[9]
D. Shiozawa, Y. Nakai, R. Miura, N. Masada, S. Matsuda, and R. Nakao, 4D evaluation of grain shape and fatigue damage of individual grains in polycrystalline alloys by diffraction contrast tomography using ultrabright synchrotron radiation, Int. J. Fatigue, 82 (2016).
DOI: 10.1016/j.ijfatigue.2015.07.014
Google Scholar
[10]
R. Gordon, R. Bender, and G. T. Herman, Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography, J. Theor. Biol., 29 (1970) 471-481.
DOI: 10.1016/0022-5193(70)90109-8
Google Scholar
[11]
D. Shiozawa, Y. Nakai, H. Nosho, Observation of 3D shape and propagation mode transition of fatigue cracks in Ti-6Al-4V under cyclic torsion using CT imaging with ultra-bright synchrotron radiation, International Journal of Fatigue, 58, (2014).
DOI: 10.1016/j.ijfatigue.2013.02.018
Google Scholar
[12]
T. Makino, Y. Neishi, D. Shiozawa, Y. Fukuda , K. Kajiwara and Y. Nakai, Evaluation of rolling contact fatigue crack path in high strength steel with artificial defects, International Journal of Fatigue, 68, (2014) 168-177.
DOI: 10.1016/j.ijfatigue.2014.05.006
Google Scholar
[13]
D. Shiozawa, T. Makino, Y. Neishi, and Y. Nakai, Observation of rolling contact fatigue cracks by laminography using ultra-bright synchrotron radiation, Procedia Mat. Sci. 3 (2014) 154-164.
DOI: 10.1016/j.mspro.2014.06.030
Google Scholar
[14]
Y. Nakai and D. Shiozawa, Initiation and growth of pits and cracks in corrosion fatigue for high strength aluminium alloy observed by micro computed-tomography using ultra-bright synchrotron radiation, Applied Mechanics and Materials, 83 (2011).
DOI: 10.4028/www.scientific.net/amm.83.162
Google Scholar
[15]
Y. Nakai and T. Kusukawa, Quantitative evaluation of slip-band growth and crack initiation in fatigue of 70-30 brass by means of atomic-force microscopy, Trans. Japan Soc. Mech. Eng (A), 67 (2001) 476-482.
DOI: 10.1299/kikaia.67.476
Google Scholar
[16]
Y. Nakai, Evaluation of fatigue damage and fatigue crack initiation process by means of atomic-force microscopy, Materials Science Research International, 7 (2001) 73-81.
DOI: 10.2472/jsms.50.6appendix_73
Google Scholar
[17]
K. Tanaka, Y. Nakai, and M. Maekawa, Microscopic study of fatigue crack initiation and early propagation in smooth specimen of low carbon steel, Journal of the Society of Materials Science, Japan, 31(1982) 376-382.
Google Scholar