Nonlinear Optimization Methods for the Determination of Heat Source Model Parameters

Article Preview

Abstract:

In this paper the technique of parameter identification is investigated to reconstruct the 3D transient temperature field for the simulation of laser beam welding. The reconstruction bases on volume heat source models and makes use of experimental data. The parameter identification leads to an inverse heat conduction problem which cannot be solved exactly but in terms of an optimal alignment of the simulation and experimental data. To solve the inverse problem, methods of nonlinear optimization are applied to minimize a problem dependent objective function.In particular the objective function is generated based on the Response Surface Model (RSM) technique. Sampling points on the RSM are determined by means of Finite-Element-Analysis (FEA). The scope of this research paper is the evaluation and comparison of gradient based and stochastic optimization algorithms. The proposed parameter identification makes it possible to determine the heat source model parameters in an automated way. The methodology is applied on welds of dissimilar material joints.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2008-2013

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. A. Goldak and M. Akhlaghi, Computational Welding Mechanics, Springer, (2005).

Google Scholar

[2] J. Goldak, M. Bibby, J. Moore, R. House and B. Patel, Computer modeling of heat flow in welds, Metallurgical Transactions B (1986), Vol. 17-3, pp.587-600.

DOI: 10.1007/bf02670226

Google Scholar

[3] V. A. Karkhin, A. S. Ilyin, V. V. Plochikine, H. W. Bergmann, Inverse Modelling of Fusion Welding Process, Mathematical Modelling of Weld Phenomena 6 (2002), pp.1017-1042.

DOI: 10.1007/bf03263391

Google Scholar

[4] V. A. Karkhin, P. N. Homich, S. Yu. Ivanov, V. Michailov and O. V. Panchenko, Prediction of Microstructure and Mechanical Properties in Hybrid Laser-arc welding, Advanved Materials Research Vols 1120-1121 (2015), pp.1292-1296.

DOI: 10.4028/www.scientific.net/amr.1120-1121.1292

Google Scholar

[5] V. A. Karkhin, P. N. Homich and V. G. Michailov, Models for Volume Heat Sources and Functional-Analytical Technique for Calculating the Temperature Fields in Butt Joints, Mathematical Modelling of Weld Phenomena 8 (2007), pp.819-834.

Google Scholar

[6] V. A. Karkhin, A. Pittner, C. Schwenk and M. Rethmeier, Simulation of inverse heat conduction in fusion welding with extended analytical heat source models, Front. Mater. Sci. 5 (2011), pp.119-125.

DOI: 10.1007/s11706-011-0137-1

Google Scholar

[7] A. Pittner, A contribution to the Solution of the Inverse Heat Conduction Problem in Welding Simulation, BAM-Dissertationsreihe, Berlin, (2012).

Google Scholar

[8] A. Pittner, D. Weiss, C. Schwenk and M. Rethmeier, Fast Temperature Field Generation for Welding Simulation and Reduction of Experimental Effort, Welding in the World Vol. 5-9 (2011), pp.83-90.

DOI: 10.1007/bf03321324

Google Scholar

[9] A. Rieger, Zur Parameteridentifikation komplexer Materialmodelle auf Basis realer und virtueller Testdaten, Universität Stuttgart, Institut für Mechanik, Bericht Nr. I-14, (2005).

Google Scholar

[10] D. Rosenthal, Mathematical Theory of Heat Distribution during Welding and Cutting, Welding Research-Supplement to the Welding Journal, Vol. 20-5 (1941), p.220-s-234-s.

Google Scholar

[11] N. N. Rykalin, Die Wärmegrundlagen des Schweißvorganges, Berlin, Verlag Technik, (1952).

Google Scholar

[12] C. Schöler, M. Nießen, U. Jansen and W. Schulz, A Fast Method for Automated Calibration of Heat Sources, Mathematical Modelling of Weld Phenomena 11 (2016), (to be published).

Google Scholar

[13] A. Schumacher, Optimierung mechanischer Strukturen – Grundlagen und industrielle Anwendung, 2. edition, Springer, (2013).

DOI: 10.1007/978-3-642-34700-9

Google Scholar

[14] L. Wittwer, N. Enzinger, Optimization of a Heat Source Using ABC Algorithm, Mathemtical Modellling of Weld Phenomena 10 (2013), pp.153-165.

Google Scholar